Home About us Contact | |||
Dual Specificity Phosphatase (dual + specificity_phosphatase)
Selected AbstractsBRCA1-IRIS activates cyclin D1 expression in breast cancer cells by downregulating the JNK phosphatase DUSP3/VHRINTERNATIONAL JOURNAL OF CANCER, Issue 1 2007Lu Hao Abstract Cyclin D1 plays an important role in cell cycle progression. In breast cancer, Cyclin D1 expression is deregulated by several mechanisms. We previously showed that in breast cancer cells, overexpression of BRCA1-IRIS induces Cyclin D1 overexpression and increases cell proliferation. BRCA1-IRIS alone or in complex with steroid receptor co-activators was targeted to the cyclin D1 promoter pre-bound by the c-Jun/AP1 and activated its transcription, which could explain the co-overexpression of BRCA1-IRIS and Cyclin D1 in breast cancer cells coupled with their increased proliferation. We report here an alternate or a complementary pathway by which BRCA1-IRIS activates Cyclin D1 expression. BRCA1-IRIS overexpression decreases the expression of the dual specificity phosphatase, DUSP3/VHR, an endogenous inhibitor of several MAPKs, including c-Jun N-terminal kinase. Although, the mechanism by which BRCA1-IRIS overexpression accomplishes that is not yet known, it is sufficient to induce Cyclin D1 overexpression in a human mammary epithelial cell model. Cyclin D1 overexpression could be blocked by co-overexpression of VHR in those cells. Furthermore, in 2 breast cancer cell lines that overexpress both BRCA1-IRIS and Cyclin D1 (MCF-7 and SKBR3) depletion of BRCA1-IRIS by RNA interference attenuated the expression of Cyclin D1 by elevating the expression level of VHR. These data demonstrate a critical role for BRCA1-IRIS in human breast cancer cell-cycle control and suggest that deregulated expression of BRCA1-IRIS is likely to reduce dependence on normal physiological growth stimuli, thereby providing a growth advantage to tumor cells and a potential mechanism of resistance to endocrine therapy. © 2007 Wiley-Liss, Inc. [source] The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neuronsTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 14 2010Haruhito Horita Abstract Many immediate early genes (IEGs) have activity-dependent induction in a subset of brain subdivisions or neuron types. However, none have been reported yet with regulation specific to thalamic-recipient sensory neurons of the telencephalon or in the thalamic sensory input neurons themselves. Here, we report the first such gene, dual specificity phosphatase 1 (dusp1). Dusp1 is an inactivator of mitogen-activated protein kinase (MAPK), and MAPK activates expression of egr1, one of the most commonly studied IEGs, as determined in cultured cells. We found that in the brain of naturally behaving songbirds and other avian species, hearing song, seeing visual stimuli, or performing motor behavior caused high dusp1 upregulation, respectively, in auditory, visual, and somatosensory input cell populations of the thalamus and thalamic-recipient sensory neurons of the telencephalic pallium, whereas high egr1 upregulation occurred only in subsequently connected secondary and tertiary sensory neuronal populations of these same pathways. Motor behavior did not induce high levels of dusp1 expression in the motor-associated areas adjacent to song nuclei, where egr1 is upregulated in response to movement. Our analysis of dusp1 expression in mouse brain suggests similar regulation in the sensory input neurons of the thalamus and thalamic-recipient layer IV and VI neurons of the cortex. These findings suggest that dusp1 has specialized regulation to sensory input neurons of the thalamus and telencephalon; they further suggest that this regulation may serve to attenuate stimulus-induced expression of egr1 and other IEGs, leading to unique molecular properties of forebrain sensory input neurons. J. Comp. Neurol. 518:2873,2901, 2010. © 2010 Wiley-Liss, Inc. [source] Type 2 Diabetes Susceptibility Genes on Chromosome 1q21,24ANNALS OF HUMAN GENETICS, Issue 2 2008S. J. Hasstedt Summary Type 2 diabetes (T2D) has been linked to chromosome 1q21,24 in multiple samples, including a Utah family sample. Variants in 13 of the numerous candidate genes in the 1q region were tested for association with T2D in a Utah case-control sample. The most promising, 19 variants in 6 candidates, were genotyped on the Utah family sample. Herein, we tested the 19 variants individually and in pairs for an effect on T2D risk in family members using a logistic regression model that accounted for gender, age, and BMI and attributed residual genetic effects to a polygenic component. Seven variants increased risk significantly through 5 pairs of interactions. The significant variant pairs were apolipoprotein A-II (APOA2) rs6413453 interacting with calsequestrin 1 (CASQ1) rs617698, dual specificity phosphatase 12 (DUSP12) rs1503814, and retinoid X receptor , (RXRG) rs10918169, a poly-T insertion-deletion polymorphism in liver pyruvate kinase (PKLR) interacting with APOA2 rs12143180, and DUSP12 rs1027702 interacting with RXRG rs10918169. Genotypes of these 5 variant pairs accounted for 25.8% of the genetic variance in T2D in these pedigrees. [source] Mutational analysis of mononucleotide repeats in dual specificity tyrosine phosphatase genes in gastric and colon carcinomas with microsatellite instabilityAPMIS, Issue 5 2010SANG YONG SONG Song SY, Kang MR, Yoo NJ, Lee SH. Mutational analysis of mononucleotide repeats in dual specificity tyrosine phosphatase genes in gastric and colon carcinomas with microsatellite instability. APMIS 2010; 118: 389,93. Coordinated protein phosphorylation and dephosphorylation are crucial in the regulation of cell signaling, and disruption of the coordination is known to play important roles in cancer development. Recent reports revealed that classical protein tyrosine phosphatase (PTP)-encoded genes are somatically mutated in human colorectal cancer. However, data on dual specificity phosphatase (DPTP) gene mutations in human cancers are lacking. By analyzing a public genomic database, we found that five DPTP genes, CDC14A, MTM1, MTMR3, SSH1, and SSH2, have mononucleotide repeats in their coding DNA sequences. To see whether these genes are mutated in cancers with microsatellite instability (MSI), we analyzed the mononucleotide repeats in 26 gastric cancers (GC) with MSI (MSI-H), 12 GC with low MSI (MSI-L), 45 GC with stable MSI (MSS), 33 colorectal cancers (CRC) with MSI-H, 14 CRC with MSI-L, and 45 CRC with MSS by single-strand conformation polymorphism (SSCP). We found CDC14A and MTMR3 mutations in five and one cancer (s), respectively. These mutations were detected in MSI-H cancers, but not in MSI-L or MSS cancers. The GC and CRC with MSI-H harbored the mutations in 15% and 6%, respectively. The CDC14A and MTMR3 mutations detected in the GC and CRC were deletion or duplication mutations of one base in the nucleotide repeats that would result in premature stops of the amino acid syntheses. Our data show that frameshift mutations of DPTP genes in MSI-H cancers occur at moderate frequencies. The data suggested that alterations in the CDC14A and MTMR3 genes may play a role in the development of GC and CRC with MSI-H by deregulating phosphatase functions possibly together with mutations of classical PTP genes. [source] |