Drought Response (drought + response)

Distribution by Scientific Domains


Selected Abstracts


Are more productive varieties of Paspalum dilatatum less tolerant to drought?

GRASS & FORAGE SCIENCE, Issue 3 2010
L. L. Couso
Abstract Paspalum dilatatum Poir., is a perennial C4 grass widely distributed in the Argentinean Pampas. The response to water availability for materials developed with forage-production purposes is unknown. We hypothesized that genetic differences between commercial varieties are reflected in their regrowth capacity under water stress. The effect of five levels of constant water supply on three plant varieties (two derived from apomictic materials: ,Relincho' and ,Alonso' and one from sexually-derived material: ,Primo') were examined in the greenhouse. Leaf- and plant-response traits were followed during 38 d after a single defoliation event. Seven response variables were measured: three of them were morphogenetic (leaf elongation rate, leaf appearance rate and leaf elongation duration) and four were structural (number of live leaves, lamina length, tiller biomass and tiller production). The sexual material showed higher values for growth variables than the apomictic varieties (leaf elongation rate, leaf length and tiller biomass) across the environmental range. Apomictic varieties showed a proportionally similar drought response to the sexual material for the seven variables. No intra-specific trade-off (statistical interaction) was found between growth under high water availability conditions and drought tolerance. [source]


Different Patterns of Physiological and Molecular Response to Drought in Seedlings of Malt- and Feed-type Barleys (Hordeum vulgare)

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 1 2010
M. Rapacz
Abstract A number of physiological and molecular characteristics are proposed as selection criteria for drought tolerance. This study measured the associations between physiological and molecular characteristics of drought response in malting and fodder spring barleys. Plants of 13 malt- and 14 feed-type Polish genotypes were exposed to drought at the four-leaf stage for 7 days. Drought susceptibility indexes (DSI) were calculated for membrane integrity, water status, gas exchange and PSII photochemical activity. Accumulation of HVA1 and SRG6 transcripts in drought was measured with real-time PCR. A wide range of variation in the drought response was observed among studied genotypes. Malting barleys were less sensitive to drought than feed-barleys according to all the traits studied. In both groups, different patterns of relationships between traits were observed. In malting genotypes only, CO2 assimilation rates in drought, as well as PSII efficiency were related to both water content and the accumulation of HVA1 transcript in leaves. On the other hand the SRG6 expression was highly correlated in both groups of barley with the photochemical efficiency of PSII. The results suggest that different physiological, biochemical and molecular characteristics should be applied in the selection towards drought resistance in the case of malting and fodder barleys. [source]


Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley

JOURNAL OF VEGETATION SCIENCE, Issue 6 2007
Pascale Weber
Abstract Question: Lower montane treeline ecotones such as the inner Alpine dry valleys are regarded as sensitive to climate change. In the dry Valais valley (Switzerland) the composition of the widespread, low altitude Pinus forests is shifting towards a mixed deciduous state. The sub-boreal P. sylvestris shows high mortality rates, whereas the deciduous sub-mediterranean Quercus pubescens is spreading. These species may act as early indicators of climate change. We evaluate this hypothesis by focusing on their differences in drought tolerance, which are hardly known, but are likely to be crucial in the current forest shift and also for future forest development. Methods: We used dendroecological methods to detect species-specific patterns in the growth response to drought. The relationship between radial growth of 401 trees from 15 mixed stands and drought was analysed by calculating response functions using yearly tree-ring indices and monthly drought indices. PCA was applied to the response ratios to discover spatial patterns of drought response. Results: A species-specific response to moisture as well as a sub-regional differentiation of the response patterns were found. While Quercus showed a response mainly to the conditions of the previous autumn and those of current spring, Pinus did not start responding before May, but showed responses throughout the whole summer. Quercus may restrict physiological activity to moist periods; growth of Pinus was much more dependent on prior growth. Conclusions: Given that the climate is changing towards (1) longer summer drought periods, (2) higher mean temperatures and (3) shifted seasonally of moisture availability, Quercus may benefit from adapting better to drier conditions. Pinus may increasingly face problems related to drought stress as it depends on summer moisture and has a smaller adaptive capacity due to its long-lived photosynthetic tissue. [source]


Intraspecific variation in the Populus balsamifera drought transcriptome

PLANT CELL & ENVIRONMENT, Issue 10 2010
ERIN T. HAMANISHI
ABSTRACT Drought is a major limitation to the growth and productivity of trees in the ecologically and economically important genus Populus. The ability of Populus trees to contend with drought is a function of genome responsiveness to this environmental insult, involving reconfiguration of the transcriptome to appropriately remodel growth, development and metabolism. Here we test hypotheses aimed at examining the extent of intraspecific variation in the drought transcriptome using six different Populus balsamifera L. genotypes and Affymetrix GeneChip technology. Within a given genotype there was a positive correlation between the magnitude of water-deficit induced changes in transcript abundance across the transcriptome, and the capacity of that genotype to maintain growth following water deficit. Genotypes that had more similar drought-responsive transcriptomes also had fewer genotypic differences, as determined by microarray-derived single feature polymorphism (SFP) analysis, suggesting that responses may be conserved across individuals that share a greater degree of genotypic similarity. This work highlights the fact that a core species-level response can be defined; however, the underpinning genotype-derived complexities of the drought response in Populus must be taken into consideration when defining both species- and genus-level responses. [source]


Sequencing over 13 000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress

PLANT CELL & ENVIRONMENT, Issue 3 2009
NESLIHAN Z. ERGEN
ABSTRACT A deeper understanding of the drought response and genetic improvement of the cultivated crops for better tolerance requires attention because of the complexity of the drought response syndrome and the loss of genetic diversity during domestication. We initially screened about 200 wild emmer wheat genotypes and then focused on 26 of these lines, which led to the selection of two genotypes with contrasting responses to water deficiency. Six subtractive cDNA libraries were constructed, and over 13 000 expressed sequence tags (ESTs) were sequenced using leaf and root tissues of wild emmer wheat genotypes TR39477 (tolerant) and TTD-22 (sensitive), and modern wheat variety Kiziltan drought stressed for 7 d. Clustering and assembly of ESTs resulted in 2376 unique sequences (1159 without hypothetical proteins and no hits), 75% of which were represented only once. At this level of EST sampling, each tissue shared a very low percentage of transcripts (13,26%). The data obtained indicated that the genotypes shared common elements of drought stress as well as distinctly differential expression patterns that might be illustrative of their contrasting ability to tolerate water deficiencies. The new EST data generated here provide a highly diverse and rich source for gene discovery in wheat and other grasses. [source]


Genotype and time of day shape the Populus drought response

THE PLANT JOURNAL, Issue 4 2009
Olivia Wilkins
Summary As exposure to episodic drought can impinge significantly on forest health and the establishment of productive tree plantations, there is great interest in understanding the mechanisms of drought response in trees. The ecologically dominant and economically important genus Populus, with its sequenced genome, provides an ideal opportunity to examine transcriptome level changes in trees in response to a drought stimulus. The transcriptome level drought response of two commercially important Populus clones (P. deltoides × P. nigra, DN34, and P. nigra × P. maximowiczii, NM6) was characterized over a diurnal period using a 4 × 2 × 2 complete randomized factorial anova experimental design (four time points, two genotypes and two treatment conditions), using Affymetrix Poplar GeneChip microarrays. Notably, the specific genes that exhibited changes in transcript abundance in response to drought differed between the genotypes and/or the time of day that they exhibited their greatest differences. This study emphasizes the fact that it is not possible to draw simple, generalized conclusions about the drought response of the genus Populus on the basis of one species, nor on the basis of results collected at a single time point. The data derived from our studies provide insights into the variety of genetic mechanisms underpinning the Populus drought response, and provide candidates for future experiments aimed at understanding this response across this economically and ecologically important genus. [source]


Changing household responses to drought in Tharaka, Kenya: vulnerability, persistence and challenge

DISASTERS, Issue 2 2008
Thomas A. Smucker
Drought is a recurring challenge to the livelihoods of those living in Tharaka District, Kenya, situated in the semi-arid zone to the east of Mount Kenya, from the lowest slopes of the mountain to the banks of the Tana River. This part of Kenya has been marginal to the economic and political life of Kenya from the colonial period until the present day. A study of more than 30 years of change in how people in Tharaka cope with drought reveals resilience in the face of major macro-level transformations, which include privatisation of landownership, population growth, political decentralisation, increased conflict over natural resources, different market conditions, and environmental shifts. However, the study also shows troubling signs of increased use of drought responses that are incompatible with long-term agrarian livelihoods. Government policy needs to address the challenge of drought under these new macro conditions if sustainable human development is to be achieved. [source]


Genomic dissection of drought resistance in durum wheat × wild emmer wheat recombinant inbreed line population

PLANT CELL & ENVIRONMENT, Issue 7 2009
ZVI PELEG
ABSTRACT Drought is the major factor limiting wheat productivity worldwide. The gene pool of wild emmer wheat, Triticum turgidum ssp. dicoccoides, harbours a rich allelic repertoire for morpho-physiological traits conferring drought resistance. The genetic and physiological bases of drought responses were studied here in a tetraploid wheat population of 152 recombinant inbreed lines (RILs), derived from a cross between durum wheat (cv. Langdon) and wild emmer (acc# G18-16), under contrasting water availabilities. Wide genetic variation was found among RILs for all studied traits. A total of 110 quantitative trait loci (QTLs) were mapped for 11 traits, with LOD score range of 3.0,35.4. Several QTLs showed environmental specificity, accounting for productivity and related traits under water-limited (20 QTLs) or well-watered conditions (15 QTLs), and in terms of drought susceptibility index (22 QTLs). Major genomic regions controlling productivity and related traits were identified on chromosomes 2B, 4A, 5A and 7B. QTLs for productivity were associated with QTLs for drought-adaptive traits, suggesting the involvement of several strategies in wheat adaptation to drought stress. Fifteen pairs of QTLs for the same trait were mapped to seemingly homoeologous positions, reflecting synteny between the A and B genomes. The identified QTLs may facilitate the use of wild alleles for improvement of drought resistance in elite wheat cultivars. [source]