Drosophila Gene (drosophila + gene)

Distribution by Scientific Domains


Selected Abstracts


Fjx1: A notch-inducible secreted ligand with specific binding sites in developing mouse embryos and adult brain

DEVELOPMENTAL DYNAMICS, Issue 3 2005
Rebecca Rock
Abstract The mouse fjx1 gene was identified as a homologue to the Drosophila gene four-jointed (fj). Fj encodes a transmembrane type II glycoprotein that is partially secreted. The gene was found to be a downstream target of the Notch signaling pathway in leg segmentation and planar cell polarity processes during eye development of Drosophila. Here, we show that fjx1 is not only conserved in vertebrates, but we also identified the murine fjx1 gene as a direct target of Notch signaling. In addition to the previously described expression of fjx1 in mouse brain, we show here that fjx1 is expressed in the peripheral nervous system, epithelial cells of multiple organs, and during limb development. The protein is processed and secreted as a presumptive ligand. Through the use of an fjx1-AP fusion protein, we could visualize fjx1 binding sites at complementary locations, supporting the notion that fjx1 may function as a novel signaling molecule. Developmental Dynamics 234:602,612, 2005. © 2005 Wiley-Liss, Inc. [source]


Drosophila neuromuscular synapse assembly and function require the TGF-, type I receptor saxophone and the transcription factor Mad

DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2003
Joel M. Rawson
Abstract Transforming growth factor-,s (TGF-,) comprise a superfamily of secreted proteins with diverse functions in patterning and cell division control. TGF-, signaling has been implicated in synapse assembly and plasticity in both vertebrate and invertebrate systems. Recently, wishful thinking, a Drosophila gene that encodes a protein related to BMP type II receptors, has been shown to be required for the normal function and development of the neuromuscular junction (NMJ). These findings suggest that a TGF-,-related ligand activates a signaling cascade involving type I and II receptors and the Smad family of transcription factors to orchestrate the assembly of the NMJ. Here we demonstrate that the TGF-, type I receptor Saxophone and the downstream transcription factor Mothers against dpp (Mad) are essential for the normal structural and functional development of the Drosophila NMJ, a synapse that displays activity-dependent plasticity. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 134,150, 2003 [source]


Isolation and characterization of the Xenopus HIVEP gene family

FEBS JOURNAL, Issue 6 2004
Ulrike Dürr
The HIVEP gene family encodes for very large sequence-specific DNA binding proteins containing multiple zinc fingers. Three mammalian paralogous genes have been identified, HIVEP1, - 2 and - 3, as well as the closely related Drosophila gene, Schnurri. These genes have been found to directly participate in the transcriptional regulation of a variety of genes. Mammalian HIVEP members have been implicated in signaling by TNF-, and in the positive selection of thymocytes, while Schnurri has been shown to be an essential component of the TGF-, signaling pathway. In this study, we describe the isolation of Xenopus HIVEP1, as well as partial cDNAs of HIVEP2 and - 3. Analysis of the temporal and spatial expression of the XHIVEP transcripts during early embryogenesis revealed ubiquitous expression of the transcripts. Assays using Xenopus oocytes mapped XHIVEP1 domains that are responsible for nuclear export and import activity. The DNA binding specificity of XHIVEP was characterized using a PCR-mediated selection and gel mobility shift assays. [source]


slowmo is required for Drosophila germline proliferation

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 2 2007
Simon Reeve
Abstract Null mutations in the Drosophila gene, slowmo (slmo), result in reduced mobility and lethality in first-instar larvae. Slowmo encodes a mitochondrial protein of unknown function, as do the two other homologs found in Drosophila. Here, we have studied a hypomorphic P-element allele of slmo demonstrating its effects on germline divisions in both testes and ovaries. Using in situ studies, enhancer-trap activity, and promoter fusions, we have shown that slmo expression in testes is found in the somatic cyst cells (SCC). The hypomorphic allele for Slmo revealed apoptotic loss of germline cells in the larval germline, culminating in a complete absence of the germline in adult flies. In females, a similar degeneration of the germarium is observed, while reporter gene expression is found in both germline and somatic cells. Using a null mutation in female germline clones, we find slmo is dispensable from the germline cells. Our results suggest that Slowmo is not required in germline cells directly, but is required in SCCs responsible for maintaining germline survival in both sexes. genesis 45:66,75, 2007. © 2007 Wiley-Liss, Inc. [source]


Malaria sporozoite antigen-directed genome-wide response in transgenic Drosophila,

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 3 2009
Jizhou Yan
Abstract Malaria kills a million people annually. Understanding the relationship between a causative parasite, Plasmodium falciparum, and the mosquito vector might suggest novel prevention approaches. We created and transformed into Drosophila two genes encoding, thrombospondin-related adhesive protein (TRAP) and circumsporozoite protein (CSP), found on the cell surface of Plasmodium sporozoites. To understand a model insect's response, we induced these proteins separately and together, performing whole genome microarray analysis measuring gene expression changes. Gene ontology classification of responding genes reveals that TRAP and CSP strongly and differentially influence Drosophila genes involved with cell motility and gene regulation, respectively; however, the most striking effects are on the immune system. While immune-related genes are but modestly elevated compared with responses to sepsis, there is a marked repression of the Toll pathway. This suggests: (1) how Plasmodium infection of the mosquito might use TRAP and CSP to modulate the host insect's physiology to promote sporozoite survival and transmission to man and (2) that approaches to elevate expression of the mosquito's Toll pathway might lead to novel methods of malaria prevention. genesis 47:196,203, 2009. © 2009 Wiley-Liss, Inc. [source]


The ecdysteroidogenic P450 Cyp302a1/disembodied from the silkworm, Bombyx mori, is transcriptionally regulated by prothoracicotropic hormone

INSECT MOLECULAR BIOLOGY, Issue 5 2005
R. Niwa
Abstract During larval and pupal development of insects, ecdysone is synthesized in the prothoracic gland (PG). Although several Drosophila genes, including Halloween P450 genes, are known to be important for ecdysteroidogenesis in PG, little is known of the ecdysteroidogenic genes in other insects. Here we report on Cyp302a1/disembodied (dib-Bm), one of the Halloween P450s in the silkworm Bombyx mori that is a carbon-22 hydroxylase. dib-Bm is predominantly expressed in PG and its developmental expression profile is correlated with a change in the ecdysteroid titre in the haemolymph. Furthermore, dib-Bm expression in cultured PGs is significantly induced by treatment with prothoracicotropic hormone. This is the first report on the transcriptional induction of a steroidogenic gene by the tropic hormone in insects. [source]