Drosophila Cells (drosophila + cell)

Distribution by Scientific Domains


Selected Abstracts


Inhibition of recombinant human maltase glucoamylase by salacinol and derivatives

FEBS JOURNAL, Issue 12 2006
Elena J. Rossi
Inhibitors targeting pancreatic ,-amylase and intestinal ,-glucosidases delay glucose production following digestion and are currently used in the treatment of Type II diabetes. Maltase-glucoamylase (MGA), a family 31 glycoside hydrolase, is an ,-glucosidase anchored in the membrane of small intestinal epithelial cells responsible for the final step of mammalian starch digestion leading to the release of glucose. This paper reports the production and purification of active human recombinant MGA amino terminal catalytic domain (MGAnt) from two different eukaryotic cell culture systems. MGAnt overexpressed in Drosophila cells was of quality and quantity suitable for kinetic and inhibition studies as well as future structural studies. Inhibition of MGAnt was tested with a group of prospective ,-glucosidase inhibitors modeled after salacinol, a naturally occurring ,-glucosidase inhibitor, and acarbose, a currently prescribed antidiabetic agent. Four synthetic inhibitors that bind and inhibit MGAnt activity better than acarbose, and at comparable levels to salacinol, were found. The inhibitors are derivatives of salacinol that contain either a selenium atom in place of sulfur in the five-membered ring, or a longer polyhydroxylated, sulfated chain than salacinol. Six-membered ring derivatives of salacinol and compounds modeled after miglitol were much less effective as MGAnt inhibitors. These results provide information on the inhibitory profile of MGAnt that will guide the development of new compounds having antidiabetic activity. [source]


Real-time monitoring of the membrane-binding and insertion properties of the cholesterol-dependent cytolysin anthrolysin O from Bacillus anthracis,

JOURNAL OF MOLECULAR RECOGNITION, Issue 4 2006
Simon Cocklin
Abstract Bacillus anthracis has recently been shown to secrete a potently hemolytic/cytolytic protein that has been designated anthrolysin O (ALO). In this work, we initiated a study of this potential anthrax virulence factor in an effort to understand the membrane,binding properties of this protein. Recombinant anthrolysin O (rALO35,512) and two N-terminally truncated versions of ALO (rALO390,512 and rALO403,512) from B. anthracis were overproduced in Escherichia coli and purified to homogeneity. The role of cholesterol in the cytolytic activity of ALO was probed in cellular cholesterol depletion assays using mouse and human macrophage-like lines, and also Drosophila Schneider 2 cells. Challenging the macrophage cells with rALO35,512, but not rALO390,512 or rALO403,512, resulted in cell death by lysis, with this cytolysis being abolished by depletion of the membrane cholesterol. Drosophila cells, which contain ergosterol as their major membrane sterol, were resistant to rALO-mediated cytolysis. In order to determine the molecular mechanism of this resistance, the interaction of rALO with model membranes comprised of POPC alone, or with a variety of structurally similar sterols including ergosterol, was probed using Biacore. Both rALO35,512 and rALO403,512 demonstrated robust binding to model membranes composed of POPC and cholesterol, with amount of protein bound proportional to the cholesterol content. Ergosterol supported greatly reduced binding of both rALO35,512 and rALO403,512, whereas other sterols tested did not support binding. The rALO403,512,membrane interaction demonstrated an equilibrium dissociation constant (KD) in the low nanomolar range, whereas rALO35,512 exhibited complex kinetics likely due to the multiple events involved in pore formation. These results establish the pivotal role of cholesterol in the action of rALO. The biosensor method developed to measure ALO recognition of cholesterol in a membrane environment could be extended to provide a platform for the screening of inhibitors of other membrane-binding proteins and peptides. Copyright© 2006 John Wiley & Sons, Ltd. [source]


Biochemical and immunological characterization of a recombinant precursor form of the house dust mite allergen Der p 1 produced by Drosophila cells

CLINICAL & EXPERIMENTAL ALLERGY, Issue 5 2000
Jacquet
Background The major house dust mite allergen Der p 1 elicits strong IgE antibody responses in patients suffering from mite allergy. Objective This study reports the expression and characterization of a recombinant precursor form of Der p 1 secreted as ProDer p 1 from insect cells. Methods The cDNA coding for ProDer p 1 was cloned downstream to the gp67 signal peptide, starting from commercial cDNA encoding Der p 1 and PCR-amplified ProDer p 1 genomic fragment. ProDer p 1, expressed in Drosophila cells and purified from culture medium, was compared to Der p 1 isolated from mite culture, in terms of glycosylation, enzymatic activity as well as IgG- and IgE-binding capacity. Results Sequence analysis of the genomic clone of ProDer p 1 revealed that, besides two introns in the mature Der p 1 coding sequence, two introns were also present in the propeptide coding sequence. ProDer p 1 was purifed to homogeneity by a combination of ion-exchange, hydroxyapatite and gel filtration chromatographies. The precursor form of Der p 1 could be processed in vitro into mature Der p 1 under acidic and reducing conditions. Carbohydrate analysis clearly indicated that ProDer p 1 expressed from insect cells was glycosylated and that glycan structures were located only in the prosequence. ProDer p 1 displayed a similar immunoreactivity towards IgE, monoclonal and polyclonal IgG antibodies compared to natural Der p 1. Specific activity measurements using synthetic substrates clearly indicated that, contrary to natural Der p 1, ProDer p 1 was totally enzymatically inactive. Conclusions The expression of an enzymatically inactive and highly antigenic ProDer p 1 zymogen molecule could be a suitable strategy for the development of in vitro diagnosis test as well as for specific immunotherapy. [source]