Drug Enantiomers (drug + enantiomer)

Distribution by Scientific Domains


Selected Abstracts


Stereoselective binding of human serum albumin

CHIRALITY, Issue 3 2006
Victor Tuan Giam Chuang
Abstract Stereoselectivity in binding can have a significant effect on the drug disposition such as first-pass metabolism, metabolic clearance, renal clearance, and protein and tissue binding. Human serum albumin (HSA) is able to stereoselectively bind a great number of various endogenous and exogenous compounds. Various experimental data suggested that the two major drug-binding cavities, namely, site I and site II, do not seem to be the stereoselective binding sites of HSA. Stereoselective binding of HSA under disease conditions such as renal and hepatic diseases was found to be enhanced. In addition, site-to-site displacement of a site II-specific drug by another site II-specific drug was found to be stereoselective, too. Endogenous compounds such as long-chain fatty acids and uremic toxins are likely to cause combined direct and cascade effects that contribute to the preferential binding of a particular drug enantiomer. Taking together the findings of other studies, it is highly possible that the stereoselective binding site exists at the interface of the subdomains. © 2006 Wiley-Liss, Inc. Chirality [source]


Evaluation of enantioselective binding of antihistamines to human serum albumin by ACE

ELECTROPHORESIS, Issue 15 2007
María Amparo Martínez-Gómez
Abstract The drug binding to plasma and tissue proteins is a fundamental factor in determining the overall pharmacological activity of a drug. HSA, together with ,1 -acid glycoprotein, are the most important plasma proteins, which act as drug carriers, with implications on the pharmacokinetic of drugs. Among plasma proteins, HSA possesses the highest enantioselectivity. In this paper, a new methodology for the study of enantiodifferentiation of chiral drugs with HSA is developed and applied to evaluate the possible enantioselective binding of four antihistamines: brompheniramine, chlorpheniramine, hydroxyzine and orphenadrine to HSA. This study includes the determination of affinity constants of drug enantiomers to HSA and the evaluation of the binding sites of antihistamines on the HSA molecule. The developed methodology includes the ultrafiltration of samples containing HSA and racemic antihistaminic drugs and the analysis of the free or bound drug fraction using the affinity EKC-partial filling technique and HSA as chiral selector. The results shown in this paper represent the first evidence of the enantioselective binding of antihistamines to HSA, the major plasmatic protein. [source]


Complexation and chiral drug recognition of an amphiphilic phenothiazine derivative with , -cyclodextrin

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 4 2008
Andrés Guerrero-Martínez
Abstract Promethazine hydrochloride (PTZ) is an amphiphilic drug derived from the phenothiazine structure that possesses a charged aliphatic chain with a chiral carbon. In the presence of , -cyclodextrin (, -CD), this drug undergoes significant changes of its photophysical properties in aqueous solution. Fluorescence spectroscopy measurements show the formation of a 1:1 stoichiometry complex with quantum yield lower than that of the pure PTZ, and two fluorescence lifetimes, which can be assigned to the free and complexed forms of the drug. In addition, 1H NMR spectra, and 2D rotating-frame Overhauser enhancement spectroscopy (ROESY) were used to characterize the drug and the complex, and to determine the effects of the complexation on the aggregation. For the drug binary system, a noncooperative association process is observed, and in the presence of macrocycle, the chemical shifts reveal a chiral resolution of the drug enantiomers, with different stability constants of the complexes. , -CD modifies the aggregation of PTZ in an extension that confirms the formation of a 1:1 complex. ROE enhancements and molecular modeling strategies show the most likely structure of the complex in solution, in which one of the phenyl rings is buried into the CD cavity, with a slight inclusion of the aliphatic part. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:1484,1498, 2008 [source]


Semipreparative chiral supercritical fluid chromatography in the fractionation of lansoprazole and two related antiulcer drugs enantiomers

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 8 2008
Laura Toribio
Abstract The semipreparative chiral separation of lansoprazole and two related compounds (pantoprazole and rabeprazole) using supercritical fluid chromatography (SFC) is presented in this work. Different loads were evaluated in order to obtain high enantiomeric purities and production rates. The volumes injected were 1, 2 and 4 mL. The concentrations of the racemic mixtures were 3 and 6 g/L for lansoprazole and 1.5 g/L for pantoprazole and rabeprazole. In all the cases, the recoveries, for a purity higher than 99.9%, were better for the second eluted enantiomer than for the first one. This fact conditioned the production rate of the first eluted enantiomer that, considering a fixed purity, was always lower than that obtained for the other one. In the case of lansoprazole it was possible to obtain 0.025 and 0.090 mg/min of the first and second eluted enantiomer, respectively, with an enantiomeric purity of 99.9%. For rabeprazole enantiomers 0.037 and 0.062 mg/min, and in the case of pantoprazole the results were better (0.062 and 0.122 mg/min) due to the higher resolution. [source]