Drug Depot (drug + depot)

Distribution by Scientific Domains


Selected Abstracts


A Gene Therapy Technology-Based Biomaterial for the Trigger-Inducible Release of Biopharmaceuticals in Mice

ADVANCED FUNCTIONAL MATERIALS, Issue 15 2010
Michael M. Kämpf
Abstract Gene therapy scientists have developed expression systems for therapeutic transgenes within patients, which must be seamlessly integrated into the patient's physiology by developing sophisticated control mechanisms to titrate expression levels of the transgenes into the therapeutic window. However, despite these efforts, gene-based medicine still faces security concerns related to the administration of the therapeutic transgene vector. Here, molecular tools developed for therapeutic transgene expression can readily be transferred to materials science to design a humanized drug depot that can be implanted into mice and enables the trigger-inducible release of a therapeutic protein in response to a small-molecule inducer. The drug depot is constructed by embedding the vascular endothelial growth factor (VEGF121) as model therapeutic protein into a hydrogel consisting of linear polyacrylamide crosslinked with a homodimeric variant of the human FK-binding protein 12 (FM), originally developed for gene therapeutic applications, as well as with dimethylsuberimidate. Administrating increasing concentrations of the inducer molecule FK506 triggers the dissociation of FM thereby loosening the hydrogel structure and releasing the VEGF121 payload in a dose-adjustable manner. Subcutaneous implantation of the drug depot into mice and subsequent administration of the inducer by injection or by oral intake triggers the release of VEGF121 as monitored in the mouse serum. This study is the first demonstration of a stimuli-responsive hydrogel that can be used in mammals to release a therapeutic protein on demand by the application of a small-molecule stimulus. This trigger-inducible release is a starting point for the further development of externally controlled drug depots for patient-compliant administration of biopharmaceuticals. [source]


Development and characterization of a fusion protein between thermally responsive elastin-like polypeptide and interleukin-1 receptor antagonist: Sustained release of a local antiinflammatory therapeutic

ARTHRITIS & RHEUMATISM, Issue 11 2007
Mohammed F. Shamji
Objective Interleukin-1 receptor antagonist (IL-1Ra) has been evaluated for the intraarticular treatment of osteoarthritis. Such administration of proteins may have limited utility because of their rapid clearance and short half-life in the joint. The fusion of a drug to elastin-like polypeptides (ELPs) promotes the formation of aggregating particles that form a "drug depot" at physiologic temperatures, a phenomenon intended to prolong the presence of the drug. The purpose of this study was to develop an injectable drug depot composed of IL-1Ra and ELP domains and to evaluate the properties and bioactivity of the recombinant ELP-IL-1Ra fusion protein. Methods Fusion proteins between IL-1Ra and 2 distinct sequences and molecular weights of ELP were overexpressed in Escherichia coli. Environmental sensitivity was demonstrated by turbidity and dynamic light scattering as a function of temperature. IL-1Ra domain activity was evaluated by surface plasmon resonance, and in vitro antagonism of IL-1,mediated lymphocyte and thymocyte proliferation, as well as IL-1,induced tumor necrosis factor , (TNF,) expression and matrix metalloproteinase 3 (MMP-3) and ADAMTS-4 messenger RNA expression in human intervertebral disc fibrochondrocytes. IL-1Ra immunoreactivity was assessed before and after proteolytic degradation of the ELP partner. Results Both fusion proteins underwent supramolecular aggregation at subphysiologic temperatures and slowly resolubilized at 37°C. Interaction with IL-1 receptor was slower in association but equivalent in dissociation as compared with the commercial antagonist. Anti,IL-1 activity was demonstrated by inhibition of lymphocyte and thymocyte proliferation and by decreased TNF, expression and ADAMTS-4 and MMP-3 transcription by fibrochondrocytes. ELP domain proteolysis liberated a peptide of comparable size and immunoreactivity as the commercial IL-1Ra. This peptide was more bioactive against lymphocyte proliferation, nearly equivalent to the commercial antagonist. Conclusion The ELP-IL-1Ra fusion protein proved to retain the characteristic ELP inverse phase-transitioning behavior as well as the bioactivity of the IL-1Ra domain. This technology represents a novel drug carrier designed to prolong the presence of bioactive peptides following intraarticular delivery. [source]


Ocular toxicity of fluoroquinolones

CLINICAL & EXPERIMENTAL OPHTHALMOLOGY, Issue 6 2007
Andrew M Thompson FRANZCO
Abstract The ocular toxicity of fluoroquinolones and the risks of their use in the treatment of ocular infection were reviewed. Systematic identification, selection, review and synthesis of published English-language studies relating to fluoroquinolone use and safety in animals and humans was conducted. Although not free of complications, fluoroquinolones are generally safe when used to treat ocular infection. Ocular toxicity appears to be dose-dependent and results from class-effects and specific fluoroquinolone structures. Phototoxicity and neurotoxicity have been reported, and toxic effects on ocular collagen may be associated with Achilles tendinopathy. Corneal precipitation may provide an advantageous drug depot but delay healing and result in corneal perforation in approximately 10% of cases. Although human toxicity studies are limited, the current recommended dose for intracameral injection of ciprofloxacin is less than 25 ,g. Intravitreal injections of ciprofloxacin 100 ,g, ofloxacin 50 ,g/mL, trovafloxacin 25 ,g or less, moxifloxacin 160 ,g/0.1 mL or less and pefloxacin 200 ,g/0.1 mL are considered safe. [source]


A Gene Therapy Technology-Based Biomaterial for the Trigger-Inducible Release of Biopharmaceuticals in Mice

ADVANCED FUNCTIONAL MATERIALS, Issue 15 2010
Michael M. Kämpf
Abstract Gene therapy scientists have developed expression systems for therapeutic transgenes within patients, which must be seamlessly integrated into the patient's physiology by developing sophisticated control mechanisms to titrate expression levels of the transgenes into the therapeutic window. However, despite these efforts, gene-based medicine still faces security concerns related to the administration of the therapeutic transgene vector. Here, molecular tools developed for therapeutic transgene expression can readily be transferred to materials science to design a humanized drug depot that can be implanted into mice and enables the trigger-inducible release of a therapeutic protein in response to a small-molecule inducer. The drug depot is constructed by embedding the vascular endothelial growth factor (VEGF121) as model therapeutic protein into a hydrogel consisting of linear polyacrylamide crosslinked with a homodimeric variant of the human FK-binding protein 12 (FM), originally developed for gene therapeutic applications, as well as with dimethylsuberimidate. Administrating increasing concentrations of the inducer molecule FK506 triggers the dissociation of FM thereby loosening the hydrogel structure and releasing the VEGF121 payload in a dose-adjustable manner. Subcutaneous implantation of the drug depot into mice and subsequent administration of the inducer by injection or by oral intake triggers the release of VEGF121 as monitored in the mouse serum. This study is the first demonstration of a stimuli-responsive hydrogel that can be used in mammals to release a therapeutic protein on demand by the application of a small-molecule stimulus. This trigger-inducible release is a starting point for the further development of externally controlled drug depots for patient-compliant administration of biopharmaceuticals. [source]


Knowledge-Based Approach towards Hydrolytic Degradation of Polymer-Based Biomaterials

ADVANCED MATERIALS, Issue 32-33 2009
Dieter Hofmann
Abstract The concept of hydrolytically degradable biomaterials was developed to enable the design of temporary implants that substitute or fulfill a certain function as long as required to support (wound) healing processes or to control the release of drugs. Examples are surgical implants, e.g., sutures, or implantable drug depots for treatment of cancer. In both cases degradability can help to avoid a second surgical procedure for explanation. Although degradable surgical sutures are established in the clinical practice for more than 30 years, still more than 40% of surgical sutures applied in clinics today are nondegradable.1 A major limitation of the established degradable suture materials is the fact that their degradation behavior cannot reliably be predicted by applying existing experimental methodologies. Similar concerns also apply to other degradable implants. Therefore, a knowledge-based approach is clearly needed to overcome the described problems and to enable the tailored design of biodegradable polymer materials. In this Progress Report we describe two methods (as examples for tools for this fundamental approach): molecular modeling combining atomistic bulk interface models with quantum chemical studies and experimental investigations of macromolecule degradation in monolayers on Langmuir,Blodgett (LB) troughs. Finally, an outlook on related future research strategies is provided. [source]