DRB Alleles (drb + allele)

Distribution by Scientific Domains


Selected Abstracts


Major histocompatibility complex class II variation in the giant panda (Ailuropoda melanoleuca)

MOLECULAR ECOLOGY, Issue 9 2006
QIU-HONG WAN
Abstract Habitat destruction and human activity have greatly impacted the natural history of the giant panda (Ailuropoda melanoleuca). Although the genetic diversity of neutral markers has been examined in this endangered species, no previous work has examined adaptive molecular polymorphisms in the giant panda. Here, the major histocompatibility complex (MHC) class II DRB locus was investigated in the giant panda, using single-strand conformation polymorphism (SSCP) and sequence analysis. Comparisons of DNA samples extracted from faecal and blood samples from the same individual revealed that the two materials yielded similar quantities and qualities of DNA, as well as identical SSCP patterns and allelic sequences, demonstrating the reliability of DNA isolation from panda faeces. Analysis of faecal samples from 60 giant pandas revealed relatively low number of alleles: seven alleles. However, the alleles were quite divergent, varying from each other by a range of 7,47 nucleotide substitutions (4,25 amino acid substitutions). Construction of a neighbour-joining tree and comparisons among DRB alleles from other species revealed that both similar and highly divergent alleles survived in the bottlenecked panda populations. Despite species-specific primers used and excellent faecal DNA isolated, a lower level of heterozygosity than expected was still observed due to inbreeding. There were three types of evidence supporting the presence of balancing selection in the giant panda: (i) an obvious excess of nonsynonymous substitutions over synonymous at the antigen-binding positions; (ii) trans -species evolution of two alleles between the giant panda and other felids; and (iii) a more even distribution of alleles than expected from neutrality. [source]


MHC diversity and the association to nematode parasitism in the yellow-necked mouse (Apodemus flavicollis)

MOLECULAR ECOLOGY, Issue 7 2005
Y. MEYER-LUCHT
Abstract In vertebrates, the genes of the major histocompatibility complex (MHC) are among the most debated candidates accounting for co-evolutionary processes of host,parasite interaction at the molecular level. The exceptionally high allelic polymorphism found in MHC loci is believed to be maintained by pathogen-driven selection, mediated either through heterozygous advantage or rare allele advantage (= frequency dependent selection). While investigations under natural conditions are still very rare, studies on humans or mice under laboratory conditions revealed support for both hypotheses. We investigated nematode burden and allelic diversity of a functional important MHC class II gene (DRB exon2) in free-ranging yellow-necked mice (Apodemus flavicollis). Twenty-seven distinct Apfl -DRB alleles were detected in 146 individuals with high levels of amino acid sequence divergence, especially at the antigen binding sites (ABS), indicating selection processes acting on this locus. Heterozygosity had no influence on the infection status (being infected or not), the number of different nematode infections (NNI) or the intensity of infection, measured as the individual faecal egg count (FEC). However, significant associations of specific Apfl -DRB alleles to both nematode susceptibility and resistance were found, for all nematodes as well as in separate analyses of the two most common nematodes. Apodemus flavicollis individuals carrying the alleles Apfl -DRB*5 or Apfl -DRB*15 revealed significantly higher FEC than individuals with other alleles. In contrast, the allele Apfl -DRB*23 showed a significant association to low FEC of the most common nematode. Thus, our results provide evidence for pathogen-driven selection acting through rare allele advantage under natural conditions. [source]


Polymorphisms in MHC- DRA and - DRB alleles of water buffalo (Bubalus bubalis) reveal different features from cattle DR alleles

ANIMAL GENETICS, Issue 1 2003
L. Sena
Summary Seventy-five individuals of Bubalus bubalis belonging to four different breeds, three of river buffalo and one of swamp buffalo, were studied for polymorphism in MHC DRB (Bubu-DRB) and DRA (Bubu-DRA) loci. Eight alleles of Bubu-DRB were found, and all alleles in the swamp type were shared with the three river breeds. All alleles sampled from the breed of European origin (Mediterranean) were present in breeds sampled in Brazil, thus variability of this locus may have been preserved to a great extent in the more recently founded Brazilian population. Bubu-DRB alleles contained higher proportions of synonymous vs. non-synonymous substitutions in the non-peptide-binding sites (PBS) region, in contrast to the pattern of variation found in BoLA-DRB3, the orthologous locus in cattle. This indicated that either the first domain exon (exon 2) of Bubu-DRB has not undergone as much recombination and/or gene conversion as in cattle alleles, or Bubu-DRB may be more ancient than BoLA-DRB3 alleles. Phylogenetic analysis of DRB alleles from Bubalus, Syncerus c. caffer, the Cape buffalo, and domestic cattle demonstrated transspecies polymorphism. Water buffalo contained two alleles of DRA that differed from each other in two amino acid positions, including one in the PBS (,22) that was also shared with Anoa depressicornis, the anoa. Discovery of variation in DRA was surprising as the first domain of DRA is a highly conserved polypeptide in mammals in general and especially in ruminants, where no other substitution in PBS was seen. [source]