Downstream Degradation (downstream + degradation)

Distribution by Scientific Domains


Selected Abstracts


Flume experiments on the horizontal stream offset by strike-slip faults

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 2 2004
Shunji OuchiArticle first published online: 4 FEB 200
Abstract Flume experiments, in which the middle section of an erosion channel is displaced horizontally, have been conducted to assess the response of streams to horizontal displacement by a strike-slip fault. The experimental erosion channel was developed in a mixture of sand and clay, which provided relatively stable banks with its cohesiveness. Horizontal displacement of a strike-slip fault perpendicular to the channel is expected to add a ,at section to its longitudinal pro,le along the fault line. The experimental stream eliminated this ,at section with downstream degradation, upstream aggradation, and lateral channel shift. As a result, a roughly continuous longitudinal pro,le was maintained. This maintenance of a continuous longitudinal pro,le along channel is considered to be the principle of stream response to horizontal displacement by a strike-slip fault. Downstream degradation was the dominant process of this stream response in the overall tendency of erosion without sand supply. When the rate of fault displacement was low (long recurrence interval), the experimental stream eroded the fault surface, jutting laterally into the channel like a scarp, and de,ected the channel within the recurrence interval. This lateral channel shift gave some gradient to the reach created by fault displacement (offset reach), and the downstream degradation occurred as much as completing the remaining longitudinal pro,le adjustment. When the rate of fault displacement was high (short recurrence interval), the lateral erosion on the ,rst fault surface was interrupted by the next fault displacement. The displacement was then added incrementally to the existing channel offset making channel shift by lateral erosion increasingly dif,cult. The channel offset with sharp bends persisted without much modi,cation, and downstream degradation and upstream aggradation became evident with the effect of the offset channel course, which worked like a dam. In this case, a slight local convexity, which was incidentally formed by downstream degradation and upstream aggradation, tended to remain in the roughly continuous longitudinal pro,le, as long as the horizontal channel offset persisted. In either case, once the experimental stream obtained a roughly continuous gradient, further channel adjustment seemed to halt. Horizontal channel offset remained to a greater or lesser extent at the end of each run long after the last fault displacement. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Linking upstream channel instability to downstream degradation: Grenada Lake and the Skuna and Yalobusha River Basins, Mississippi

ECOHYDROLOGY, Issue 3 2009
Sean J. Bennett
Abstract Unstable fluvial systems are characterized by actively migrating knickpoints, incising channel beds, failing banks, and recruitment of large woody debris and it would appear that river corridors downstream of these processes would be adversely affected or impaired because of higher fluxes of sediment and other riverine products. In north-central Mississippi, the Yalobusha River is one such system and the characteristics of two downstream locations are examined to explore this geomorphic linkage between upstream instability and downstream degradation. For the large woody debris plug along the Yalobusha River, it is found that (1) the deposit is composed mostly of sand covered with a veneer of silt and clay, (2) agrichemicals and enriched concentrations of elements are prevalent, and (3) excessive sedimentation and wood accumulation have forced river flow entirely out-of-bank. For Grenada Lake, it is found that (1) the impounded sediment is predominantly clay, (2) agrichemicals and elements observed throughout the reservoir show no spatial variation, (3) little difference exists in the amount and quality between the sediments deposited in Skuna and Yalobusha River arms, and (4) only a small fraction of the reservoir's storage capacity has been lost because of sedimentation. While excessive sedimentation and large woody debris recruitment have had a marked affect on stream corridor function in the area of the debris plug, the high sediment loads associated with the unstable portions of the Yalobusha River and their associated products have not been communicated to Grenada Lake. The fish consumption advisories within Grenada Lake and its tributaries due to bioaccumulated trace elements and agrichemicals, appear to be independent of the pervasive river channel instability occurring upstream. Copyright © 2009 John Wiley & Sons, Ltd. [source]