Downregulated Genes (downregulated + gene)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Young, adult, and old rats have similar changes in mRNA expression of many skeletal genes after fracture despite delayed healing with age

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 10 2006
Ralph A. Meyer Jr.
Abstract Genes active in fracture healing are not well understood. Because age slows skeletal repair, the change in gene expression between animals of differing ages may illuminate novel pathways important to this healing response. To explore this, 6-, 26-, and 52-week-old female Sprague-Dawley rats were subjected to mid-diaphyseal femoral fracture with intramedullary fixation. The fracture callus was collected at 0, 0.4 (3 days), 1, 2, 4, or 6 weeks after fracture. RNA was extracted and pooled between two animals for each sample. Three samples were done for each time point for each age for a total of 54 Affymetrix U34A GeneChip microarrays. Of the 8700 genes on each array, 3300 were scored as present. Almost all of these genes were affected by femoral fracture with either upregulation or downregulation in the 6 weeks after fracture. Upregulated genes included markers for matrix genes for both cartilage and bone, osteoblasts, osteocytes, osteoclasts, fibroblasts, and mast cells. Downregulated genes included genes related to blood cell synthesis. Nearly all genes presently associated with bone metabolism showed the same response to fracture healing regardless of the age of the animal. In conclusion, skeletal fracture led to similar changes in RNA expression for most skeletal genes despite the delay in the formation of bone to bridge the fracture gap in old rats. Defects in the healing of skeletal trauma in older rats may lie in systems not normally studied by skeletal biologists. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 24:1933,1944, 2006 [source]


Upregulation of CC chemokine ligand 18 and downregulation of CX3C chemokine receptor 1 expression in human T-cell leukemia virus type 1-associated lymph node lesions: Results of chemokine and chemokine receptor DNA chip analysis

CANCER SCIENCE, Issue 12 2007
Kei Shimizu
Adult T-cell leukemia/lymphoma (ATLL) is a human malignancy associated with human T-cell leukemia virus type 1 (HTLV-1). The pathological features of the lymph nodes of ATLL change from those of lymphadenitis to Hodgkin's-like features and those of lymphoma. Chemokines and their receptors are closely associated with T-cell subgroups and immune responses. To clarify the relationship between chemokines and their receptor expression, as well as the development of ATLL, 17 cases with ATLL were analyzed using DNA chips of chemokines and their receptors. All cases showed a varied and mixed pattern of upregulated and downregulated gene expression of Th1, Th2, naïve, and cytotoxic cell-associated chemokine genes. As CC chemokine ligand 18 (CCL18) accounted for the most upregulated gene and CX3C chemokine receptor 1 (CX3CR1) for the most downregulated gene, they were selected for immunohistochemical analysis. Immunohistochemical staining showed expression of the two genes in immunological cells, with a positive expression for reticulum cells, but not for ATLL cells. HTLV-1-associated lymphadenitis type (n = 13) and Hodgkin's-like type (n = 12) cases showed significantly higher CCL18 expression than the non-specific lymphadenitis cases (n = 10) (P < 0.05). However, all HTLV-1-associated cases showed significantly lower CX3CR1 expression than the non-specific lymphadenitis cases (P < 0.05). These results suggest that upregulation of CCL18 expression and downregulation of CX3CR1 expression play a role in immune responses against the ATLL cells. (Cancer Sci 2007; 98: 1875,1880) [source]


Radiation-induced gene expression profile of human cells deficient in 8-hydroxy-2,-deoxyguanine glycosylase

INTERNATIONAL JOURNAL OF CANCER, Issue 3 2006
M. Ahmad Chaudhry
Abstract The human OGG1 gene encodes a DNA glycosylase that is involved in the base excision repair of 8-hydroxy-2,-deoxyguanine (8-OH-dG) from oxidatively damaged DNA. Cellular 8-OH-dG levels accumulate in the absence of this activity and could be deleterious for the cell. To assess the role of 8-oxoguanine glycosylase (OGG1) in the cellular defense mechanism in a specific DNA repair defect background, we set out to determine the expression pattern of base excision repair genes and other cellular genes not involved in the base excision pathway in OGG1-deficient human KG-1 cells after ionizing radiation exposure. KG-1 cells have lost OGG1 activity due to a homozygous mutation of Arg229Gln. Gene expression alterations were monitored at 4, 8, 12 and 24 hr in 2 Gy irradiated cells. Large-scale gene expression profiling was assessed with DNA microarray technology. Gene expression analysis identified a number of ionizing radiation-responsive genes, including several novel genes. There were 2 peaks of radiation-induced gene induction or repression: one at 8 hr and the other at 24 hr. Overall the number of downregulated genes was higher than the number of upregulated genes. The highest number of downregulated genes was at 8 hr postirradiation. Genes corresponding to cellular, physiologic, developmental and extracellular processes were identified. The highest number of radiation-induced genes belonged to the signal transduction category, followed by genes involved in transcription and response to stress. Microarray gene expression data were independently validated by relative quantitative RT-PCR. Surprisingly, none of the genes involved in the base excision repair of radiation-induced DNA damage showed altered expression. © 2005 Wiley-Liss, Inc. [source]


Gene expression of AGS cells stimulated with released proteins by Helicobacter pylori

JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 4 2008
Nayoung Kim
Abstract Background and Aim:, Interactions between released proteins by Helicobacter pylori (H. pylori) and the cells of gastric epithelium to which it adheres may contribute to gastric inflammation and epithelial damage. The present study was performed to evaluate the gene expression of AGS gastric cancer cells stimulated with released proteins by H. pylori. Methods:, Gene expression of AGS cells to the stimulation by H. pylori -released proteins (G27 strain) were monitored using oligonucleotide microarrays. Results:, Eighty-eight genes (0.88%) and eight genes (0.08%) were up- or downregulated, respectively, by treating AGS cells with H. pylori -released proteins but not by H. pylori adhesion after 12 h of coculture. Out of the selected 40 up- and five downregulated genes, 29 upregulated genes classified as general RNA polymerase II transcription factor activity (GTF2B, PPARGC1A), SH3/SH2 adaptor activity (CRKL), transferase activity (ACLY, CRKL, PIGC, PLK4), and oxidoreductase activity (IDH1) were confirmed to be upregulated by released proteins and not by H. pylori adhesion by real-time reverse transcription,polymerase chain reaction. When the concentrated H. pylori -cultured supernatant prepared by our protocol was treated by boiling, the upregulations of 26 of these 29 genes (89.7%) except for CD160, ZNF268, and PSAT1 disappeared. This confirmed that most of these upregulations were caused by released proteins. Conclusion:, Host genes involving transcription, signaling and stress are significantly modulated by the proteins released by H. pylori. This might strengthen the gastroduodenal pathogenesis induced by H. pylori. [source]


Differentially expressed cellular genes following HBV: potential targets of anti-HBV drugs?

JOURNAL OF VIRAL HEPATITIS, Issue 4 2005
J. Yang
Summary., The aim of the study was to screen for cellular genes that are differentially expressed following hepatitis B virus (HBV) infection, in an attempt to identify potential targets of anti-HBV drugs. An oligonucleotide microarray containing 231 virus-infection-associated genes was prepared. Differential gene expression in HepG2.2.15 cells compared to control with HepG2 cells was analysed by this in-house microarray. The change in gene expression in HepG2.2.15 cells treated by lamivudine on days 4 and 8 after exposure was also studied. Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was used to comfirm the differentially expressed genes induced by HBV and lamivudine. There were 31 upregulated and four downregulated genes in HepG2.2.15 cells compared with the HepG2 control cells. Eleven genes were consistently altered by lamivudine at both time points. Of the 31 genes that were upregulated in HepG2.2.15 cells, there were seven genes which were downregulated by lamivudine. Of the four downregulated genes, there was one gene which was upregulated by lamivudine. Of the differentially expressed genes induced by HBV and lamivudine, the expression of five genes was confirmed by semi-quantitative RT-PCR. These results shed new light on the effects of HBV and lamivudine on cellular gene expression. Differentially expressed genes induced by HBV and lamivudine could potentially become new anti-HBV drug targets in novel therapies. [source]


Genomic scale analysis of the human keratinocyte response to broad-band ultraviolet-B irradiation

PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 1 2002
Joe Takao
Ultraviolet B (UVB) radiation is an important inducer of many biologic changes in skin, of which keratinocytes are a key target. To gain better insight into changes in gene expression generated in the early phase after UVB exposure, we used complementary RNA (cRNA) microarray hybridization to compare differences in mRNA expression of UVB-irradiated (single dose of 100 J/m2 broad-band UVB) and sham-irradiated primary cultured human keratinocytes. Six hours after irradiation, total RNA was isolated from keratinocytes, and cRNA was synthesized and hybridized to a GeneChip expression array (Affymetrix) consisting of 6800 genes. Based on a threshold of >,twofold change, 187 genes (2.8%) were designated to be the most UVB-responsive. Surprisingly, none of these genes had been shown previously to be modulated by UVB. Conversely, several genes in the microarray that had been reported previously to be UVB- responsive by other methods showed less (< twofold) or no change. Northern blotting of seven differentially modulated genes produced results similar to those derived from microarray technology, thereby validating the accuracy of screening. Clustering based on known or likely functions indicated that among 88 upregulated genes, nine encode for cytochrome c subunits, six for ribosomal proteins, and two for regulators of apoptosis. By contrast, many of the 99 downregulated genes are involved in transcription, differentiation and transport. These findings indicate that keratinocytes respond to a single low dose of broad-band UVB irradiation by enhancing processes involved in energy production and translation, while suppressing those related to transcription, differentiation and transport. [source]


Gene Expression Profiling of Nasal Polyps Associated With Chronic Sinusitis and Aspirin-Sensitive Asthma,

THE LARYNGOSCOPE, Issue 5 2008
Konstantina M. Stankovic MD
Abstract Objective: To identify genes whose expression is most characteristic of chronic rhinosinusitis and aspirin-sensitive asthma through genome-wide transcriptional profiling of nasal polyp tissue. Study Design: Prospective, controlled study conducted at a tertiary care institution. Methods: Thirty genome-wide expression microarrays were used to compare nasal polyp tissue from patients with chronic rhinosinusitis alone (CRS, n = 10) or chronic rhinosinusitis and a history of aspirin-sensitive asthma (ASA, n = 10) to normal sinonasal mucosa from patients who underwent surgery for non-sinus related conditions (controls, n = 10). Genes found to be most characteristic of each polyp phenotype, as determined from bioinformatic analyses, were validated using real-time quantitative polymerase chain reaction (RT-PCR) and immunohistochemistry in different patient sets. Results: The transcriptional signature of the control mucosa was distinctly different from that of either polyp phenotype. Genes most characteristic of the CRS phenotype included two upregulated genes,met proto-oncogene (MET) and protein phosphatase 1 regulatory subunit 9B (PPP1R9B),and two downregulated genes, prolactin-induced protein (PIP) and zinc alpha2-glycoprotein (AZGP1). The gene most characteristic of the ASA phenotype was periostin (POSTN), which was upregulated relative to controls. Differences between the CRS and ASA phenotypes were associated with alterations in the 6p22, 22q13, and 1q23 chromosomal regions. Conclusions: Nasal polyps appear to have characteristic transcriptional signatures compared to normal sinonasal mucosa. The five genes identified in this study likely play roles in the pathogenesis of polyps associated with CRS and ASA, and are therefore attractive targets for novel medical therapies for these common debilitating diseases. [source]


Unique Early Gene Expression Patterns in Human Adult-to-Adult Living Donor Liver Grafts Compared to Deceased Donor Grafts

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 4 2009
J. De Jonge
Because of inherent differences between deceased donor (DD) and living donor (LD) liver grafts, we hypothesize that the molecular signatures will be unique, correlating with specific biologic pathways and clinical patterns. Microarray profiles of 63 biopsies in 13 DD and 8 LD liver grafts done at serial time points (procurement, backbench and postreperfusion) were compared between groups using class comparisons, network and biological function analyses. Specific genes were validated by quantitative PCR and immunopathology. Clinical findings were also compared. Following reperfusion, 579 genes in DD grafts and 1324 genes in LDs were differentially expressed (p < 0.005). Many upregulated LD genes were related to regeneration, biosynthesis and cell cycle, and a large number of downregulated genes were linked to hepatic metabolism and energy pathways correlating with posttransplant clinical laboratory findings. There was significant upregulation of inflammatory/immune genes in both DD and LD, each with a distinct pattern. Gene expression patterns of select genes associated with inflammation and regeneration in LD and DD grafts correlated with protein expression. Unique patterns of early gene expression are seen in LD and DD liver grafts, correlating with protein expression and clinical results, demonstrating distinct inflammatory profiles and significant downregulation of metabolic pathways in LD grafts. [source]


Gene expression profiling of human promyelocytic cells in response to infection with Anaplasma phagocytophilum

CELLULAR MICROBIOLOGY, Issue 4 2005
José De La Fuente
Summary Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae) causes human, equine and canine granulocytic anaplasmosis and tick-borne fever of ruminants. The rickettsia parasitizes granulocytes and bone marrow progenitor cells, and can be propagated in human promyelocytic and tick cell lines. In this study, microarrays of synthetic polynucleotides of 21 329 human genes were used to identify genes that are differentially expressed in HL-60 human promyelocytic cells in response to infection with A. phagocytophilum. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) of selected genes confirmed the results of the microarray analysis. Six genes in the A. phagocytophilum -infected cells were found to be upregulated greater than 30-fold, while expression of downregulated genes most often did not change more than sixfold. Genes that were found to be differentially regulated in infected cells were those essential for cellular mechanisms including growth and differentiation, cell transport, signalling and communication and protective response against infection, some of which are most likely necessary for infection and multiplication of A. phagocytophilum in host cells. The differentially regulated genes described herein provide new information on the gene expression profiles in A. phagocytophilum -infected HL-60 cells, thus expanding in a global manner the existing information on the response of mammalian cells to A. phagocytophilum infection. [source]