Home About us Contact | |||
Double-labelling Immunohistochemistry (double-labelling + immunohistochemistry)
Selected AbstractsLearning-associated regulation of polysialylated neural cell adhesion molecule expression in the rat prefrontal cortex is region-, cell type- and paradigm-specificEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2008Judith P. F. Ter Horst Abstract The prefrontal cortex (PFC) is an interconnected set of cortical areas that function in the synthesis of a diverse range of information and production of complex behaviour. It is now clear that these frontal structures, through bidirectional excitatory communication with the hippocampal formation, also play a substantial role in long-term memory consolidation. In the hippocampus, morphological synaptic plasticity, supported by regulation of neural cell adhesion molecule (NCAM) polysialylation status, is crucial to information storage. The recent description of polysialylated neurons in the various fields of the medial PFC suggests these structures to possess a similar capacity for synaptic plasticity. Here, using double-labelling immunohistochemistry with glutamic acid decarboxylase 67, we report that the nature of NCAM polysialic acid-positive neurons in the PFC is region-specific, with a high proportion (30,50%) of a ,-aminobutyric acid (GABA)ergic phenotype in the more ventral infralimbic, orbitofrontal and insular cortices compared with just 10% in the dorsal structures of the cingulate, prelimbic and frontal cortices. Moreover, spatial learning was accompanied by activations in polysialylation expression in ventral PFC structures, while avoidance conditioning involved downregulation of this plasticity marker that was restricted to the dorsomedial PFC , the cingulate and prelimbic cortices. Thus, in contrast to other structures integrated functionally with the hippocampus, memory-associated plasticity mobilized in the PFC is region-, cell type- and task-specific. [source] Leptin-Target Neurones of the Rat Hypothalamus Express Somatostatin ReceptorsJOURNAL OF NEUROENDOCRINOLOGY, Issue 9 2003Z. Stepanyan Abstract Hypothalamic leptinoceptive neurones can be visualized by histochemical demonstration of leptin-induced nuclear translocation of the signalling molecule STAT3. We investigated the relationship of the leptinoceptive neurones to the somatostatin signalling system. With double-labelling immunohistochemistry, we studied the colocalization of leptin-activated transcription factor, STAT3, with somatostatin receptor subtypes, sst1, sst2A, sst2B, sst3 and sst4, or the neuropeptide itself, in the rat hypothalamus. Immunoreactivity for all the entities was widely distributed throughout the entire hypothalamus. Despite the wide distribution, only few cases of colocalization of somatostatin with leptin-activated STAT3 were detected in the paraventricular, arcuate and dorsomedial nuclei. A moderate to high degree of colocalization of nuclear STAT3 and all investigated subtypes of somatostatin receptors was found in the lateral and dorsal hypothalamic areas and in the dorsomedial hypothalamic nucleus. Immunoreactivity for sst1, sst2B and sst4 was present in STAT3-containing nuclei of the paraventricular, periventricular, arcuate and ventromedial hypothalamic neurones, as well as in the retrochiasmatic and posterior hypothalamic areas. Despite the wide distribution of sst2A in the rat hypothalamus, few events of colocalization with leptin-activated STAT3 were observed in the dorsomedial nucleus and in the lateral and dorsal hypothalamic areas only. Many leptin-responsive neurones of the dorsal, lateral, periarcuate, perifornical and posterior hypothalamic areas, as well as in the ventromedial and dorsomedial hypothalamic nuclei, displayed sst3 immunoreactivity at their neuronal cilia. These results provide strong anatomical evidence for the direct interaction of leptin and the somatostatin systems in neuroendocrine control loops such as the energy homeostasis, growth or stress response. [source] Phosphorylated Map Kinase (ERK1, ERK2) Expression is Associated with Early Tau Deposition in Neurones and Glial Cells, but not with Increased Nuclear DNA Vulnerability and Cell Death, in Alzheimer Disease, Pick's Disease, Progressive Supranuclear Palsy and Corticobasal DegenerationBRAIN PATHOLOGY, Issue 2 2001I. Ferrer Abnormal tau phosphorylation and deposition in neurones and glial cells is one of the major features in tau pathies. The present study examines the involvement of the Ras/MEK/ERK pathway of tau phosphorylation in Alzheimer disease (AD), Pick's disease (PiD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), by Western blotting, single and double-labelling immunohistochemistry, and p21Ras activation assay. Since this pathway is also activated in several paradigms of cell death and cell survival, activated ERK expression is also analysed with double-labelling immunohistochemistry and in situ end-labelling of nuclear DNA fragmentation to visualise activated ERK in cells with increased nuclear DNA vulnerability. The MEK1 antibody recognises one band of 45 kD that identifies phosphorylation-independent MEK1, whose expression levels are not modified in diseased brains. The ERK antibody recognises one band of 42 kD corresponding to the molecular weight of phosphorylation-independent ERK2; the expression levels, as well as the immunoreactivity of ERK in individual cells, is not changed in AD, PiD, PSP and CBD. The antibody MAPK-P distinguishes two bands of 44 kD and 42 kD that detect phosphorylated ERK1 and ERK2. MAPK-P expression levels, as seen with Western blotting, are markedly increased in AD, PiD, PSP and CBD. Moreover, immunohistochemistry discloses granular precipitates in the cytoplasm of neurones in AD, mainly in a subpopulation of neurones exhibiting early tau deposition, whereas neurones with developed neurofibrillary tangles are less commonly immunostained. MAPK-P also decorates neurones with Pick bodies in PiD, early tau deposition in neurones in PSP and CBD, and cortical achromatic neurones in CBD. In addition, strong MAPK-P immunoreactivity is found in large numbers of tau -positive glial cells in PSP and CBD, as seen with double-labelling immunohistochemistry. Yet no co-localisation of enhanced phosphorylated ERK immunoreactivity and nuclear DNA fragmentation is found in AD, PiD, PSP and CBD. Finally, activated Ras expression levels are increased in AD cases when compared with controls. These results demonstrate increased phosphorylated (active) ERK expression in association with early tau deposition in neurones and glial cells in taupathies, and suggest activated Ras as the upstream activator of the MEK/ERK pathway of tau phosphorylation in AD. [source] Allergic airway inflammation induces tachykinin peptides expression in vagal sensory neurons innervating mouse airwaysCLINICAL & EXPERIMENTAL ALLERGY, Issue 6 2005Q. T. Dinh Summary Background Allergic airway inflammation has been shown to induce pro-inflammatory neuropeptides such as tachykinin peptides substance P (SP) and neurokinin A (NKA) together with related peptide like calcitonin gene-related peptide (CGRP) in nodose sensory neurons innervating guinea-pig airways. Objective The present study was designed to examine the effects of allergen sensitization and challenge on the SP/NKA expression in the jugular,nodose ganglion neurons innervating the murine airways. Methods Using retrograde neuronal tracing technique in combination with double-labelling immunohistochemistry, the expression of SP/NKA was investigated in a murine model of allergic airway inflammation. Results Allergic airway inflammation was found to induce the expression of SP/NKA (13.2±1.43% vs. 5.8±0.37%, P<0.01) in large-diameter (>20 ,m) vagal sensory neurons retrograde labelled with Fast blue dye from the main stem bronchi. Conclusion Based on the induction of tachykinins in airway-specific large-sized jugular,nodose ganglia neurons by allergic airway inflammation, the present study suggests that allergen sensitization and challenge may lead to de novo induction of tachykinins in neurons. This may partly contribute to the pathogenesis of airways diseases such as allergic airway inflammation. [source] Nerve growth factor-induced substance P in capsaicin-insensitive vagal neurons innervating the lower mouse airwayCLINICAL & EXPERIMENTAL ALLERGY, Issue 9 2004Q. T. Dinh Summary Background Nerve growth factor (NGF) is elevated in allergic diseases such as bronchial asthma and can lead to an induction of substance P (SP) and related neuropeptides in guinea-pigs large-diameter, neurofilament-positive airway neurons. Objective In the present study, the effect of NGF on tyrosine kinase receptor trkA and the capsaicin receptor TRPV1 expression in airway-specific vagal sensory neurons located in the jugular,nodose ganglia complex (JNC) of mice was investigated. Methods Using retrograde neuronal tracing in combination with double-labelling immunohistochemistry, SP, trkA- and TRPV1-receptor expression was examined in airway-specific sensory neurons of BALB/c mice before and after NGF treatment. Results NGF injected into the lower airway was able to induce SP (13.0±2.03% vs. 5.9±0.33%) and trkA expression (78±2.66% vs. 60±2.11%) in larger diameter (>25 ,m), capsaicin-insensitive and trkA-positive vagal sensory neurons that were retrograde-labelled with Fast Blue dye from the main stem bronchi. Conclusion Based on the extent of SP and trkA co-expression in airway-specific neurons by NGF treatment, the present study suggests that, following a peripheral activation of trkA receptor on SP afferent by NGF which is elevated in allergic inflammation, there may be trkA-mediated SP induction to mediate neurogenic airway inflammation. [source] |