Dorsomedial Nucleus (dorsomedial + nucleus)

Distribution by Scientific Domains


Selected Abstracts


Leptin-Target Neurones of the Rat Hypothalamus Express Somatostatin Receptors

JOURNAL OF NEUROENDOCRINOLOGY, Issue 9 2003
Z. Stepanyan
Abstract Hypothalamic leptinoceptive neurones can be visualized by histochemical demonstration of leptin-induced nuclear translocation of the signalling molecule STAT3. We investigated the relationship of the leptinoceptive neurones to the somatostatin signalling system. With double-labelling immunohistochemistry, we studied the colocalization of leptin-activated transcription factor, STAT3, with somatostatin receptor subtypes, sst1, sst2A, sst2B, sst3 and sst4, or the neuropeptide itself, in the rat hypothalamus. Immunoreactivity for all the entities was widely distributed throughout the entire hypothalamus. Despite the wide distribution, only few cases of colocalization of somatostatin with leptin-activated STAT3 were detected in the paraventricular, arcuate and dorsomedial nuclei. A moderate to high degree of colocalization of nuclear STAT3 and all investigated subtypes of somatostatin receptors was found in the lateral and dorsal hypothalamic areas and in the dorsomedial hypothalamic nucleus. Immunoreactivity for sst1, sst2B and sst4 was present in STAT3-containing nuclei of the paraventricular, periventricular, arcuate and ventromedial hypothalamic neurones, as well as in the retrochiasmatic and posterior hypothalamic areas. Despite the wide distribution of sst2A in the rat hypothalamus, few events of colocalization with leptin-activated STAT3 were observed in the dorsomedial nucleus and in the lateral and dorsal hypothalamic areas only. Many leptin-responsive neurones of the dorsal, lateral, periarcuate, perifornical and posterior hypothalamic areas, as well as in the ventromedial and dorsomedial hypothalamic nuclei, displayed sst3 immunoreactivity at their neuronal cilia. These results provide strong anatomical evidence for the direct interaction of leptin and the somatostatin systems in neuroendocrine control loops such as the energy homeostasis, growth or stress response. [source]


Unpredictable feeding schedules unmask a system for daily resetting of behavioural and metabolic food entrainment

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2007
Carolina Escobar
Abstract Restricted feeding schedules (RFS) are a potent Zeitgeber that uncouples daily metabolic and clock gene oscillations in peripheral tissues from the suprachiasmatic nucleus (SCN), which remains entrained to the light,dark cycle. Under RFS, animals develop food anticipatory activity (FAA), characterized by arousal and increased locomotion. Food availability in nature is not precise, which suggests that animals need to adjust their food-associated activity on a daily basis. This study explored the capacity of rats to adjust to variable and unpredictable feeding schedules. Rats were exposed either to RFS with fixed daily meal (RF) or to a variable meal time (VAR) during the light phase. RF and VAR rats exhibited daily metabolic oscillations driven by the last meal event; however, VAR rats were not able to show a robust adjustment in the anticipating corticosterone peak. VAR rats were unable to exhibit FAA but exhibited a daily activation pattern in phase with the previous meal. In both groups the dorsomedial nucleus of the hypothalamus and arcuate nucleus, involved in energy balance, exhibited increased c-Fos expression 24 h after the last meal, while only RF rats exhibited low c-Fos expression in the SCN. Data show that metabolic and behavioural food-entrained rhythms can be reset on a daily basis; the two conditions elicit a similar hypothalamic response, while only the SCN is inhibited in rats exhibiting anticipatory activity. The variable feeding strategy uncovered a rapid (24-h basis) resetting mechanism for metabolism and general behaviour. [source]


Projections of RFamide-related Peptide-3 Neurones in the Ovine Hypothalamus, with Special Reference to Regions Regulating Energy Balance and Reproduction

JOURNAL OF NEUROENDOCRINOLOGY, Issue 8 2009
Y. Qi
RFamide-related peptide-3 (RFRP-3) is a neuropeptide produced in cells of the paraventricular nucleus and dorsomedial nucleus of the ovine hypothalamus. In the present study, we show that these cells project to cells in regions of the hypothalamus involved in energy balance and reproduction. A retrograde tracer (FluoroGold) was injected into either the arcuate nucleus, the lateral hypothalamic area or the ventromedial nucleus. The distribution and number of retrogradely-labelled RFRP-3 neurones was determined. RFRP-3 neurones projected to the lateral hypothalamic area and, to a lesser degree, to the ventromedial nucleus and the arcuate nucleus. Double-label immunohistochemistry was employed to identify cells receiving putative RFRP-3 input to cells in these target regions. RFRP-3 cells were seen to project to neuropeptide Y and pro-opiomelanocortin neurones in the arcuate nucleus, orexin and melanin-concentrating hormone neurones in the lateral hypothalamic area, as well as orexin cells in the dorsomedial nucleus and corticotrophin-releasing hormone and oxytocin cells in the paraventricular nucleus. Neurones expressing gonadotrophin-releasing hormone in the preoptic area were also seen to receive input from RFRP-3 projections. We conclude that RFRP-3 neurones project to hypothalamic regions and cells involved in regulation of energy balance and reproduction in the ovine brain. [source]


Leptin-Target Neurones of the Rat Hypothalamus Express Somatostatin Receptors

JOURNAL OF NEUROENDOCRINOLOGY, Issue 9 2003
Z. Stepanyan
Abstract Hypothalamic leptinoceptive neurones can be visualized by histochemical demonstration of leptin-induced nuclear translocation of the signalling molecule STAT3. We investigated the relationship of the leptinoceptive neurones to the somatostatin signalling system. With double-labelling immunohistochemistry, we studied the colocalization of leptin-activated transcription factor, STAT3, with somatostatin receptor subtypes, sst1, sst2A, sst2B, sst3 and sst4, or the neuropeptide itself, in the rat hypothalamus. Immunoreactivity for all the entities was widely distributed throughout the entire hypothalamus. Despite the wide distribution, only few cases of colocalization of somatostatin with leptin-activated STAT3 were detected in the paraventricular, arcuate and dorsomedial nuclei. A moderate to high degree of colocalization of nuclear STAT3 and all investigated subtypes of somatostatin receptors was found in the lateral and dorsal hypothalamic areas and in the dorsomedial hypothalamic nucleus. Immunoreactivity for sst1, sst2B and sst4 was present in STAT3-containing nuclei of the paraventricular, periventricular, arcuate and ventromedial hypothalamic neurones, as well as in the retrochiasmatic and posterior hypothalamic areas. Despite the wide distribution of sst2A in the rat hypothalamus, few events of colocalization with leptin-activated STAT3 were observed in the dorsomedial nucleus and in the lateral and dorsal hypothalamic areas only. Many leptin-responsive neurones of the dorsal, lateral, periarcuate, perifornical and posterior hypothalamic areas, as well as in the ventromedial and dorsomedial hypothalamic nuclei, displayed sst3 immunoreactivity at their neuronal cilia. These results provide strong anatomical evidence for the direct interaction of leptin and the somatostatin systems in neuroendocrine control loops such as the energy homeostasis, growth or stress response. [source]


Characterization of CART neurons in the rat and human hypothalamus

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2001
Carol F. Elias
Cocaine- and amphetamine-regulated transcript (CART) is a recently described neuropeptide widely expressed in the rat brain. CART mRNA and peptides are found in hypothalamic sites such as the paraventricular nucleus (PVH), the supraoptic nucleus (SON), the lateral hypothalamic area (LHA), the dorsomedial nucleus of the hypothalamus (DMH), the arcuate nucleus (Arc), the periventricular nucleus (Pe), and the ventral premammillary nucleus (PMV). Intracerebroventricular administration of recombinant CART peptide decreases food intake and CART mRNA levels in the Arc are regulated by leptin. Leptin administration induces Fos expression in hypothalamic CART neurons in the PVH, the DMH, the Arc, and the PMV. In the current study, we used double label in situ hybridization histochemistry to investigate the potential direct action of leptin on hypothalamic CART neurons and to define the chemical identity of the hypothalamic CART neurons in the rat brain. We found that CART neurons in the Arc, DMH, and PMV express long form leptin-receptor mRNA, and the suppressor of cytokine signaling-3 (SOCS-3) mRNA after an acute dose of intravenous leptin. We also found that CART neurons in the parvicellular PVH, in the DMH and in the posterior Pe coexpress thyrotropin-releasing hormone (TRH) mRNA. CART neurons in the magnocellular PVH and in the SON coexpress dynorphin (DYN), and CART cell bodies in the LHA and in the posterior Pe coexpress melanin-concentrating hormone (MCH) and glutamic acid decarboxylase (GAD-67) mRNA. In the Arc, a few CART neurons coexpress neurotensin (NT) mRNA. In addition, we examined the distribution of CART immunoreactivity in the human hypothalamus. We found CART cell bodies in the PVH, in the SON, in the LHA, in the Arc (infundibular nucleus) and in the DMH. We also observed CART fibers throughout the hypothalamus, in the bed nucleus of the stria terminalis, and in the amygdala. Our results indicate that leptin directly acts on CART neurons in distinct nuclei of the rat hypothalamus. Furthermore, hypothalamic CART neurons coexpress neuropeptides involved in energy homeostasis, including MCH, TRH, DYN, and NT. The distribution of CART cell bodies and fibers in the human hypothalamus indicates that CART may also play a role in the regulation of energy homeostasis in humans. J. Comp. Neurol. 432:1,19, 2001. © 2001 Wiley-Liss, Inc. [source]