Dorsal Thalamus (dorsal + thalamus)

Distribution by Scientific Domains


Selected Abstracts


Zinc finger gene fez - like functions in the formation of subplate neurons and thalamocortical axons

DEVELOPMENTAL DYNAMICS, Issue 3 2004
Tustomu Hirata
Abstract fez - like (fezl) is a forebrain-expressed zinc finger gene required for the formation of the hypothalamic dopaminergic and serotonergic (monoaminergic) neurons in zebrafish. To reveal its function in mammals, we analyzed the expression of the mouse orthologue of fezl and generated fezl -deficient mice by homologous recombination. Mouse fezl was expressed specifically in the forebrain from embryonic day 8.5. At mid-gestation, fezl expression was detected in subdomains of the forebrain, including the dorsal telencephalon and ventral diencephalon. Unlike the zebrafish fezl mutant too few, the fezl -deficient mice displayed normal development of hypothalamic monoaminergic neurons, but showed abnormal "hyperactive" behavior. In fezl,/, mice, the thalamocortical axons (TCA) were reduced in number and aberrantly projected to the cortex. These mutants had a reduced number of subplate neurons, which are involved in guiding the TCA from the dorsal thalamus, although the subplate neurons were born normally. These results suggest that fezl is required for differentiation or survival of the subplate neurons, and reduction of the subplate neurons in fezl -deficient mice leads to abnormal development of the TCA, providing a possible link between the transcriptional regulation of forebrain development and hyperactive behavior. Developmental Dynamics 230:546,556, 2004. © 2004 Wiley-Liss, Inc. [source]


Cooperative activity of multiple upper layer proteins for thalamocortical axon growth

DEVELOPMENTAL NEUROBIOLOGY, Issue 3 2008
Takuro Maruyama
Abstract During development, sensory thalamocortical (TC) axons grow into the neocortex and terminate primarily in layer 4. To study the molecular mechanism that underlies lamina-specific TC axon termination, we investigated the responsiveness of TC axons to ephrin-A5, semaphorin-7A (Sema7A) and kit ligand (KL), which are expressed in the upper layers of the developing cortex. Dissociated cells of the dorsal thalamus from embryonic rat brain were cultured on dishes that were coated with preclustered Fc-tagged extracellular domains of these molecules. Each protein was found to promote TC axon growth in a dose-dependent fashion of a bell-shaped curve. Any combination of the three proteins showed a cooperative effect in lower concentrations but not in higher concentrations, suggesting that their growth-promoting activities act in a common pathway. The effect of spatial distributions of these proteins was further tested on a filter membrane, in which these proteins were printed at a size that recapitulates the scale of laminar thickness in vivo, using a novel protein-printing technique, Simple-To-mAke Micropore Protein-Printing (STAMP2) method. The results demonstrated that TC axons grew massively on the laminin-coated region but were prevented from invading the adjacent ephrin-A5-printed region, suggesting that TC axons detect relative differences in the growth effect between these regions. Moreover, the inhibitory action of ephrin-A5 was enhanced by copresence with KL and Sema7A. Together, these results suggest that the lamina-specific TC axon targeting mechanism involves growth-inhibitory activity by multiple molecules in the upper layers and detection in the molecular environments between the upper and deep layers. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2008 [source]


Functional neuroanatomy of the parahippocampal region: The lateral and medial entorhinal areas

HIPPOCAMPUS, Issue 9 2007
Kristin M. Kerr
Abstract The entorhinal cortex (EC) serves a pivotal role in corticohippocampal interactions, but a complete description of its extrinsic connections has not been presented. Here, we have summarized the cortical, subcortical, and hippocampal connections of the lateral entorhinal area (LEA) and the medial entorhinal area (MEA) in the rat. We found that the targets and relative strengths of the entorhinal connections are strikingly different for the LEA and MEA. For example, the LEA receives considerably heavier input from the piriform and insular cortices, whereas the MEA is more heavily targeted by the visual, posterior parietal, and retrosplenial cortices. Regarding subcortical connections, the LEA receives heavy input from the amygdala and olfactory structures, whereas the MEA is targeted by the dorsal thalamus, primarily the midline nuclei and also the dorsolateral and dorsoanterior thalamic nuclei. Differences in the LEA and MEA connections with hippocampal and parahippocampal structures are also described. In addition, because the EC is characterized by bands of intrinsic connectivity that span the LEA and MEA and project to different septotemporal levels of the dentate gyrus, special attention was paid to the efferents and afferents of those bands. Finally, we summarized the connections of the dorsocaudal MEA, the region in which the entorhinal "grid cells" were discovered. The subregional differences in entorhinal connectivity described here provide further evidence for functional diversity within the EC. It is hoped that these findings will inform future studies of the role of the EC in learning and memory. © 2007 Wiley-Liss, Inc. [source]


Distribution of large terminal inputs from the primary and secondary somatosensory cortices to the dorsal thalamus in the rodent

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 13 2010
Chia-Chi Liao
Abstract The present study was undertaken to determine the precise projection pattern from the primary (S1) and secondary (S2) somatosensory cortices to the posterior nuclear proper (POm) and ventroposterior thalamic nuclei (VP). The POm was previously shown to receive large boutons arising exclusively from layer V of the S1 barrel region. This descending input was proposed to play a key role, namely, as a driver, in shaping the receptive property of POm neurons. To determine whether other body parts and the S2 also contribute such unique inputs to the dorsal thalamus, anterograde neuroanatomical tracers were focally deposited in the S1 and S2 forepaw and whisker regions of rats and C57BL6-Tg (GFPm)/Thy1 transgenic mice. Our major findings were that, 1) irrespective of body representations, both the S1 and the S2 provided corticothalamic large terminals to the POm with comparable morphological characteristics and 2) descending large terminals were also noted in particular subzones within the VP, including boundary and caudal areas. We concluded, based on these findings, that the rodent VP has three partitions: the rostral VP innervated by small corticothalamic terminals, the caudal VP with both corticothalamic small and large terminals, and a surrounding shell region, which also contained large terminals. Furthermore, assuming that the large terminal has a driver's role, we propose that particular subzones in the VP may play a role as a multiple-order thalamic relay so that they can simultaneously coordinate with first- and higher-order relays in the thalamocortical circuitry for processing somatosensory information. J. Comp. Neurol. 518:2592,2611, 2010. © 2010 Wiley-Liss, Inc. [source]


Localization and connectivity of the lateral amygdala in anuran amphibians

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 2 2004
Nerea Moreno
Abstract On the basis of chemoarchitecture and gene expression patterns in the amphibian amygdaloid complex, new subdivisions have been proposed and compared with their counterparts in amniotes. Thus, a portion of the ventral pallium of anurans has been tentatively named "lateral amygdala" (LA) and compared with the basolateral complex of mammals. To strengthen the putative homology, we have analyzed the pattern of afferent and efferent connections of the LA in the anurans Rana perezi and Xenopus laevis. Tract-tracing techniques with dextran amines were used under in vivo and in vitro conditions. The results showed important connections with the main olfactory bulb, via the lateral olfactory tract. In addition, abundant intratelencephalic connections, via the rostral branch of the stria terminalis, were revealed, involving mainly the basal ganglia, septal nuclei, bed nucleus of the stria terminalis, and especially other amygdaloid nuclei. Nontelencephalic connections were found from the dorsal thalamus and parabrachial area and, in particular, from the hypothalamus through the caudal branch of the stria terminalis. All these results strongly suggest that the LA in anurans is a multimodal area in the ventral pallium that shares many hodological features with the amygdaloid ventropallial derivatives of the basolateral complex of amniotes. J. Comp. Neurol. 479:130,148, 2004. © 2004 Wiley-Liss, Inc. [source]


Visual subdivisions of the dorsal ventricular ridge of the iguana (Iguana iguana) as determined by electrophysiologic mapping

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2002
Paul R. Manger
Abstract The dorsal ventricular ridge (DVR) of reptiles is one of two regions of the reptilian telencephalon that receives input from the dorsal thalamus. Although studies demonstrate that two visual thalamic nuclei, the dorsal lateral geniculate and rotundus, send afferents to the dorsal cortex and DVR, respectively, relatively little is known about physiologic representations. The present study determined the organization of the visual recipient region of the iguana DVR. Microelectrode mapping techniques were used to determine the extent, number of subdivisions, and retinotopy within the visually responsive region of the anterior DVR (ADVR). Visually responsive neurons were restricted to the anterior two thirds of the ADVR. Within this region, two topographically organized subdivisions were determined. Each subdivision contained a full representation of the visual field and could be distinguished from the other by differences in receptive field properties and reversals in receptive field progressions across their mutual border. A third subdivision of the ADVR, in which neurons are responsive to visual stimulation is also described; however, a distinct visuotopic representation could not be determined for this region. This third region forms a shell surrounding the lateral, dorsal, and medial aspects of the topographically organized subdivisions. These results demonstrate that there are multiple physiologic subdivisions in the thalamic recipient zone of the ADVR of the iguana. Comparisons to the ADVR of other reptiles are made, homologies to ectostriatial regions of the bird are proposed, and the findings are discussed in relation to telencephalic organization of other vertebrates. J. Comp. Neurol. 453:226,246, 2002. © 2002 Wiley-Liss, Inc. [source]


Distribution Pattern of Neuropeptide Y in the Brain, Pituitary and Olfactory System during the Larval Development of the Toad Rhinella arenarum (Amphibia: Anura)

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 2 2009
T. Heer
Summary The first NPY-immunoreactivity (ir) in the central nervous system of Rhinella arenarum was obtained just after hatching in the pre-optic area, ventral thalamus and rostral rhombencephalon. During pre-metamorphosis, new NPY-ir cells were observed in other brain areas such as pallium, septum and striatum, infundibulum and pars intermedia of the pituitary. Further maturation continued through pro-metamorphosis with the appearance of cell groups in the diagonal band, amygdala, pre-optic nucleus, dorsal nucleus of the habenula, anterior ventral and dorsal thalamus, suprachiasmatic nucleus, tuberculum posterior, tectum, torus semicircularis, inter-peduncular nucleus and median eminence. During the metamorphic climax and soon after, the relative abundance of NPY-ir fibres decreased in all hypothalamic areas and the staining intensity and number of NPY-ir cells in the pallium also decreased, whereas no cells were found in the striatum, dorsal nucleus of the habenula and tectum. In the olfactory epithelium, nerve or bulb, neither cells nor NPY-ir fibres were found during the stages of development analysed. The ontogeny pattern of the NPY-ir neuronal system in the brain of Rh. arenarum is more similar to the spatiotemporal appearance reported for Rana esculenta than to that reported for Xenopus laevis. Many NPY-ir fibres were found in the median eminence and in the pars intermedia of the pituitary, supporting the idea that this neuropeptide may play a role in the modulation of hypophyseal secretion during development. [source]