Home About us Contact | |||
Dormant Season (dormant + season)
Selected AbstractsTopographic controls on shallow groundwater dynamics: implications of hydrologic connectivity between hillslopes and riparian zones in a till mantled catchmentHYDROLOGICAL PROCESSES, Issue 16 2010J. M. Detty Abstract Hydrologic connectivity is regarded as one of the key controls in determining catchment rainfall,run-off response and has been linked to the export of solutes from uplands to streams. We sought to identify the patterns of hydrologic connectivity within a small forested watershed by monitoring the shallow groundwater fluctuations of simple topographically defined landform sequences (footslope,backslope,shoulder). A spatially distributed instrument network was employed to continuously measure hydrometric responses of the shallow subsurface during seasonal wet-up from summer through winter in a small till mantled research catchment. We demonstrate that the spatial patterns of shallow water table extent and duration, and therefore hydrologic connectivity, had a strong seasonal signature. During the low antecedent soil moisture conditions typically associated with the growing season, water tables were patchy, discontinuous, and only the wettest near-stream footslope areas were consistently hydrologically connected with the stream network. During the dormant season, footslopes and backslopes maintained water tables that persisted between storm events and were almost continuously connected with the stream network. In the largest storm events, the typically driest landforms (shoulder slopes) established shallow transient water tables, suggesting that nearly the entire catchment was temporarily hydrologically connected with the stream network. In addition, we found significant differences (p < 0·05) in the magnitude and duration of groundwater responses to rainfall among landform groups both seasonally and during events. These results have implications for using a similarity approach in representing characteristic hydrologic responses of topographically defined watershed elements, determining hydrologic connectivity between watershed elements, as well as for understanding solute transport in catchments. Copyright © 2010 John Wiley & Sons, Ltd. [source] Sources of stream sulphate in headwater catchments in Otter Creek Wilderness, West Virginia, USAHYDROLOGICAL PROCESSES, Issue 4 2001Ross D. Fitzhugh Abstract Upland forested catchments in the Appalachian Plateau region receive among the greatest rates of atmospheric sulphur (S) deposition in the eastern USA, although coal mines and S-bearing minerals in bedrock may also contribute to stream acidity in this region. Watershed mass balance and stable S isotopic values (,34S) of sulphate (SO42,) were used to assess the contributions to stream SO42, from atmospheric and lithogenic sources at Yellow Creek (YC), a headwater catchment on the Appalachian Plateau in West Virginia. Oxygen isotopic values (,18O) of water were used to study catchment hydrology. Stream output of SO42, was c. 60% of atmospheric S deposition during a relatively dry year, whereas atmospheric S input was nearly balanced by stream output during a year with above normal amounts of precipitation. The temporal patterns and values of ,34S were similar between bulk precipitation and stream water at two upper elevation sites. At the lowest elevation site, stream ,34S values were similar to bulk precipitation values during the dormant season but were slightly lower than precipitation during the low-flow summer, probably as the result of a greater proportion of stream water being derived from deep hydrological flowpaths that have contacted S-bearing minerals with low ,34S values in coal seams. Stream ,34S values at YC were significantly higher than at Coal Run, a catchment containing abandoned coal prospects and having a greater amount of S-bearing minerals than YC. Results suggested that lithogenic S is a relatively minor source and that atmospheric deposition is the principal source of stream SO42,, and thus stream acidity, at YC. Copyright © 2001 John Wiley & Sons, Ltd. [source] Spatial and temporal variation of fire regimes in a mixed conifer forest landscape, Southern Cascades, California, USAJOURNAL OF BIOGEOGRAPHY, Issue 8 2001R. Matthew Beaty Aim In this study, we evaluated the fire-forest mosaic of a mixed conifer forest landscape by testing the hypothesis that pre-fire suppression fire regime parameters vary with species composition (tree species), and environment (i.e. slope aspect, slope position, elevation). Location Our study was conducted in the 1587 ha Cub Creek Research Natural Area (CCRNA), Lassen National Forest, CA, USA. Methods We quantified the return interval, seasonal occurrence, size, rotation period, and severity of fires using dendroecology. Results Slope aspect, potential soil moisture, forest composition, and fire regime parameters in our study area co-vary. Median composite and point fire return intervals (FRI) were longest on higher, cooler, more mesic, north-facing (NF) slopes covered with white fir (Abies concolor), Douglas fir (Pseudotsuga menziesii),white fir, and red fir (A. magnifica),white fir forests, shortest on the dry, south-facing (SF) slopes covered with ponderosa pine (Pinus ponderosa),white fir forests and intermediate on west-facing slopes dominated by white fir,sugar pine (P. lambertiana),incense cedar (Libocedrus decurrens) forests. The spatial pattern for length of fire rotation (FR) was the same as that for FRI. Fires in CCRNA mixed conifer forests occurred mainly (90%) in the dormant season. Size of burns in CCRNA mixed conifer forests were generally small (mean=106 ha), however, during certain drought years widespread fires burned across fuel breaks and spread throughout the watershed. Fire severity was mainly high on upper slopes, low on lower slopes and moderate and low severity on middle slopes. Patterns of fire severity also varied with slope aspect. Fire frequency decreased dramatically in CCRNA after 1905. Conclusions In CCRNA, fire regime parameters [e.g. FRI, fire extent, FR, fire severity] varied widely with species composition, slope aspect and slope position. There was also temporal variation in fire extent with the most widespread fires occurring during drought years. The important contributions of topography and climate to variation in the fire regime indicates that exogenous factors play a key role in shaping the fire-forest structure mosaic and that the fire-forest structure mosaic is more variable, less predictable and less stable than previously thought. Finally, some characteristics of the fire regime (i.e. fire severity, season of burn) in CCRNA are different than those described for other mixed conifer forests and this suggests that there are geographical differences in mixed conifer fire regimes along the Pacific slope. [source] Fire disturbance and forest structure in old-growth mixed conifer forests in the northern Sierra Nevada, CaliforniaJOURNAL OF VEGETATION SCIENCE, Issue 6 2007R. Matthew Beaty Abstract Question: This study evaluates how fire regimes influence stand structure and dynamics in old-growth mixed conifer forests across a range of environmental settings. Location: A 2000-ha area of mixed conifer forest on the west shore of Lake Tahoe in the northern Sierra Nevada, California. Methods: We quantified the age, size, and spatial structure of trees in 12 mixed conifer stands distributed across major topographic gradients. Fire history was reconstructed in each stand using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing the fire history with the age, size, and spatial structure of trees in a stand. Results: There was significant variation in species composition among stands, but not in the size, age and spatial patterning of trees. Stands had multiple size and age classes with clusters of similar aged trees occurring at scales of 113 - 254 m2. The frequency and severity of fires was also similar, and stands burned with low to moderate severity in the dormant season on average every 9,17 years. Most fires were not synchronized among stands except in very dry years. No fires have burned since ca. 1880. Conclusions: Fire and forest structure interact to perpetuate similar stand characteristics across a range of environmental settings. Fire occurrence is controlled primarily by spatial variation in fuel mosaics (e.g. patterns of abundance, fuel moisture, forest structure), but regional drought synchronizes fire in some years. Fire exclusion over the last 120 years has caused compositional and structural shifts in these mixed conifer forests. [source] Seasonal detection of pear decline phytoplasma by nested-PCR in different pear cultivarsPLANT PATHOLOGY, Issue 4 2003M. Garcia-Chapa Seasonal detection of pear decline phytoplasma was studied in three pear cultivars: Bartlett, Limonera and Blanquilla. Samples from 43 infected trees were collected monthly over 2 years and analysed by nested PCR. The three cultivars each showed a different pattern of phytoplasma detection. The maximum detection rate of pear decline phytoplasma occurred in December in the three orchards, and it remained high throughout the winter months. In spring, when new buds appeared and sap was produced, the detection rate decreased. Leaf midribs, buds and stems were compared to determine which sample was more reliable for phytoplasma detection. The best indicators were stems. The presence of phytoplasma in sieve tubes during the dormant season was determined by grafting. The results suggest that phytoplasmas could overwinter in shoots, with the implication that vegetative propagation during this period could also disseminate the disease. [source] Season of Burn Influences Fire Behavior and Fuel Consumption in Restored Shortleaf Pine,Grassland CommunitiesRESTORATION ECOLOGY, Issue 4 2002Jeffrey C. Sparks Abstract Pine forests of southeastern United States have been burned primarily in the dormant season to accomplish silvicultural objectives, but with increased emphasis on ecosystem restoration fires are now prescribed in other seasons. We observed fire behavior during both growing season and dormant season prescribed fires in shortleaf pine (Pinus echinata) stands managed as pine,grassland communities for the endangered Red-cockaded Woodpecker (Picoides borealis). Fuel beds for dormant season fires were characterized by lower amounts of live fuels, higher amounts of 1-hr time lag fuel and a greater total fuel load than growing season fires. Fuel consumption and percent of the total fuels consumed was greater in dormant season fires than in growing season fires. Fireline intensity, heat per unit area, reaction intensity, and rate of spread were greater in dormant season fires than in growing season fires. Lower fire intensity in growing season fires was possibly a function of lower amounts of 1-hr time lag fuels, higher amounts of live herbaceous fuels, and possibly a less porous fuel bed. Additionally, growing season fires had lower heat per unit area and reaction intensity and slower rates of spread. The Keetch-Byram drought index (KBDI) did not provide a good index for potential fire behavior on our drought-prone sandy loam soils. KBDI during growing season fires averaged over four times greater than during dormant season fires, but fire intensity was greater in dormant season fires. Low KBDI values may be misleading and give a false sense of security for dormant season fire prescriptions on sandy loam soils because the duff layer may dry more quickly as a result of inherent low water holding capacity. High KBDI values may result in prescribed burns being canceled because of conditions that are erroneously perceived to be outside the prescription window. We caution against over-reliance on KBDI as a determining factor for conducting prescribed burns on areas with sandy or sandy loam soils. [source] |