Home About us Contact | |||
Dominated Grassland (dominated + grassland)
Selected AbstractsC3,C4 composition and prior carbon dioxide treatment regulate the response of grassland carbon and water fluxes to carbon dioxideFUNCTIONAL ECOLOGY, Issue 1 2007H. W. POLLEY Summary 1Plants usually respond to carbon dioxide (CO2) enrichment by increasing photosynthesis and reducing transpiration, but these initial responses to CO2 may not be sustained. 2During May, July and October 2000, we measured the effects of temporarily increasing or decreasing CO2 concentration by 150,200 µmol mol,1 on daytime net ecosystem CO2 exchange (NEE) and water flux (evapotranspiration, ET) of C3,C4 grassland in central Texas, USA that had been exposed for three growing seasons to a CO2 gradient from 200 to 560 µmol mol,1. Grassland grown at subambient CO2 (< 365 µmol mol,1) was exposed for 2 days to an elevated CO2 gradient (> 365 µmol mol,1). Grassland grown at elevated CO2 was exposed for 2 days to a subambient gradient. Our objective was to determine whether growth CO2 affected the amount by which grassland NEE and ET responded to CO2 switching (sensitivity to CO2). 3The NEE per unit of leaf area was greater (16,20%) and ET was smaller (9,20%), on average, at the higher CO2 concentration during CO2 switching in May and July. The amount by which NEE increased at the higher CO2 level was smaller at elevated than subambient growth concentrations on both dates, but relationships between NEE response and growth CO2 were weak. Conversely, the effect of temporary CO2 change on ET did not depend on growth CO2. 4The ratio of NEE at high CO2 to NEE at low CO2 during CO2 change in July increased from 1·0 to 1·26 as the contribution of C3 cover to total cover increased from 26% to 96%. Conversely, in May, temporary CO2 enrichment reduced ET more in C4 - than C3 -dominated grassland. 5For this mesic grassland, sensitivity of NEE and ET to brief change in CO2 depended as much on the C3,C4 composition of vegetation as on physiological adjustments related to prior CO2 exposure. [source] Effect of depth and width of cultivation and sowing date on establishment of red clover (Trifolium pratense L.) by rotary slot-seeding into grasslandGRASS & FORAGE SCIENCE, Issue 2 2010P. Komárek Abstract The effect of different combinations of time of sowing and depth and width of soil cultivation using a rotary slot-seeding machine to introduce red clover (Trifolium pratense) was determined for some characteristics of newly established red clover plants in a lowland Dactylis glomerata -dominated grassland in the Czech Republic. Sowing was carried out on four sowing dates in one growing season: 11 May; 21 June (after the first cut); 9 August (after the second cut); and 19 September. The experimental treatments consisted of all combinations of four depths (5, 10, 15 and 20 cm) and four widths (5, 10, 15 and 20 cm) of soil cultivation. Measurements were made of number of plants, weight and height of plants, weight and height of roots. Measurements at 2 months after sowing showed fewer seedlings for the 11 May sowing than for later sowing dates. The number of red clover plants increased as the row width was increased up to 15 cm, regardless of the depth of slot. Positive effects of slot width on weight and height of plants and weight and length of roots were recorded. A highly positive correlation was found between weight of plants and weight of roots. Width of row was the key factor for the successful establishment of seedlings into the existing sward by slot-seeding. A row width of 10 cm and depth of slot of 5 cm was considered a satisfactory combination. [source] Grasshopper Herbivory Affects Native Plant Diversity and Abundance in a Grassland Dominated by the Exotic Grass Agropyron cristatumRESTORATION ECOLOGY, Issue 1 2009David H. Branson Abstract The indirect effects of native generalist insect herbivores on interactions between exotic and native grassland plants have received limited attention. Crested wheatgrass (Agropyron cristatum) is the most common exotic rangeland grass in western North America. Crested wheatgrass communities are resistant to colonization by native plant species and have strong competitive effects on native species, imposing problems for the restoration of native grasslands. Grasshoppers are generalist herbivores that are often abundant in Crested wheatgrass,dominated sites in the northern Great Plains. We conducted two experiments in a Crested wheatgrass,dominated grassland in western North Dakota to test the hypothesis that grasshopper herbivory influences local Crested wheatgrass community composition by impeding native seedlings. Grasshopper herbivory negatively affected the species richness, abundance, and Shannon diversity of native plants in 3 of 4 years. Although additional research is needed to determine if grasshoppers actively select native plants, the effects of grasshopper herbivory may be an important consideration in the restoration of Crested wheatgrass areas. Our findings illustrate the importance of understanding the impact of native generalist invertebrate herbivores on the relationships between exotic and native plants. [source] Fire and the Miocene expansion of C4 grasslandsECOLOGY LETTERS, Issue 7 2005Jon E. Keeley Abstract C4 photosynthesis had a mid-Tertiary origin that was tied to declining atmospheric CO2, but C4 -dominated grasslands did not appear until late Tertiary. According to the ,CO2 -threshold' model, these C4 grasslands owe their origin to a further late Miocene decline in CO2 that gave C4 grasses a photosynthetic advantage. This model is most appropriate for explaining replacement of C3 grasslands by C4 grasslands, however, fossil evidence shows C4 grasslands replaced woodlands. An additional weakness in the threshold model is that recent estimates do not support a late Miocene drop in pCO2. We hypothesize that late Miocene climate changes created a fire climate capable of replacing woodlands with C4 grasslands. Critical elements were seasonality that sustained high biomass production part of year, followed by a dry season that greatly reduced fuel moisture, coupled with a monsoon climate that generated abundant lightning-igniting fires. As woodlands became more open from burning, the high light conditions favoured C4 grasses over C3 grasses, and in a feedback process, the elevated productivity of C4 grasses increased highly combustible fuel loads that further increased fire activity. This hypothesis is supported by paleosol data that indicate the late Miocene expansion of C4 grasslands was the result of grassland expansion into more mesic environments and by charcoal sediment profiles that parallel the late Miocene expansion of C4 grasslands. Many contemporary C4 grasslands are fire dependent and are invaded by woodlands upon cessation of burning. Thus, we maintain that the factors driving the late Miocene expansion of C4 were the same as those responsible for maintenance of C4 grasslands today. [source] Resilience of a high-conservation-value, semi-arid grassland on fertile clay soils to burning, mowing and ploughingAUSTRAL ECOLOGY, Issue 4 2010TOM LEWIS Abstract In grassland reserves, managed disturbance is often necessary to maintain plant species diversity. We carried out experiments to determine the impact of fire, kangaroo grazing, mowing and disc ploughing on grassland species richness and composition in a nature reserve in semi-arid eastern Australia. Vegetation response was influenced by winter,spring drought after establishment of the experiments, but moderate rainfall followed in late summer,autumn. Species composition varied greatly between sampling times, and the variability due to rainfall differences between seasons and years was greater than the effects of fire, kangaroo grazing, mowing or disc ploughing. In the fire experiment, species richness and composition recovered more rapidly after spring than autumn burning. Species richness and composition were similar to control sites within 12 months of burning and mowing, suggesting that removal of the dominant grass canopy is unnecessary to enhance plant diversity. Two fires (separated by 3 years) and post-fire kangaroo grazing had only minor influence on species richness and composition. Even disc ploughing caused only a small reduction in native richness. The minor impact of ploughing was explained by the small areas that were ploughed, the once-off nature of the treatment, and the high degree of natural movement and cracking in these shrink-swell soils. Recovery of the composition and richness of these grasslands was rapid because of the high proportion of perennial species that resprout vegetatively after fire and mowing. There appears to be little conservation benefit from fire, mowing or ploughing ungrazed areas, as we could identify no native plant species dependent on frequent disturbance for persistence in this grassland community. However, the ability of the Astrebla- and Dichanthium -dominated grasslands to recover quickly after disturbance, given favourable seasonal conditions, suggests that they are well adapted to natural disturbances (e.g. droughts, fire, flooding and native grazing). [source] |