Dominant Tree (dominant + tree)

Distribution by Scientific Domains

Terms modified by Dominant Tree

  • dominant tree species

  • Selected Abstracts


    Kinetics and Mechanism of Ni(II) Chelation in Model and Real Solutions of Xylem Sap of Quercus ilex

    ELECTROANALYSIS, Issue 22 2007
    Margarida, Maria Correia, Santos
    Abstract The kinetics of formation and dissociation of Ni(II) complexes with oxalic and citric acids was studied by cyclic voltammetry in model solutions of xylem sap of Q. ilex (the dominant tree growing on serpentine soils of Northeast Portugal) using representative concentrations, pH and ionic strength. The role of magnesium on complex formation was analyzed from solutions where Mg is present at concentration levels found in the xylem sap of Q. ilex growing on both nonserpentine and serpentine soils. Kinetics studies were also done in diluted solutions of real xylem sap samples, spiked with increasing amounts of magnesium. The values obtained for the apparent rate constants were those anticipated by the proposed model. To test the validity of the methodology and mechanisms, formation rate constants, kf (M,1 s,1) of Ni(II) complexes with citrate and oxalate were evaluated that compare with the values from Eigen mechanism. [source]


    Changes in the structure and composition of miombo woodlands mediated by elephants (Loxodonta africana) and fire over a 26-year period in north-western Zimbabwe

    AFRICAN JOURNAL OF ECOLOGY, Issue 2 2009
    Isaac Mapaure
    Abstract Changes in structure and composition of miombo woodlands mediated by elephants and fire were studied in 26-year-old permanent transects established in 1972 in north-western Zimbabwe. Elephants caused 48% decline in proportions of large trees (>11 cm diameter), significant reductions (30.9,90.9%) in tree heights, reductions in stem areas (43.5%) and densities (2.5%) of all trees. There were increases in proportions of small trees (64.8%), shrub canopy volumes (271%) and shrub densities (172%). These increases are attributed to natural recruitment because of longer fire-free periods and reduction of tree suppression effects on lower strata as a result of elephant-induced tree declines. Frequencies of occurrence of most species dropped by 28,89.6%. Brachystegia boehmii was replaced by Pseudolachnostylis maprouneifolia as the most dominant tree, largely because of high elephant preference for Brachystegia boehmii. A new suite of species, dominated by Combretaceae, increased in dominance resulting in local floristic changes. Reductions in old elephant (33.4%), old unknown (89.9%) and new elephant (13.7%) damage suggest that elephant occupancy of miombo woodlands has declined, possibly because of limited availability of preferred browse species. This study clearly shows that elephants and fire have contributed significantly to the changes in miombo woodlands in the area. Résumé Les changements de la structure et de la composition des forêts de miombo dus aux éléphants et aux feux ont étéétudiés sur des transects permanents établis en 1972 dans le nord-ouest du Zimbabwe. Les éléphants ont causé un déclin de 48% de la proportion de grands arbres (>11 cm de diamètre), des réductions significatives (30,9,90,9%) de la hauteur des arbres, des réductions de la surface des tiges (43,5%) et de la densité (2,5%) de tous les arbres. Il y avait des augmentations de la proportion de petits arbres (64,8%), du volume des buissons (271%) et de leur densité (172%). Ces augmentations sont attribuées au recrutement naturel dûà de plus longues périodes sans feux, et à la réduction des effets suppressifs des arbres sur les couches inférieures due au déclin des arbres induit par les éléphants. La fréquence de la plupart des espèces a chuté de 28%à 89,6%. Brachystegia boehmi a été remplacé par Pseudolachnostylis maprouneifolia comme arbre dominant, en grande partie à cause de la forte préférence marquée par les éléphants pour Brachystegia boehmi. Une nouvelle série d'espèces, dominée par des Combrétacées, a accru sa dominance et entraîné des changements floristiques locaux. La réduction des dommages « anciens dus aux éléphants » (33,4%), « anciens d'origine inconnue » (,9,9%) et « nouveaux dus aux éléphants » (13,7%) suggère que l'occupation des forêts de miombo par les éléphants a diminué, peut-être à cause de la disponibilité limitée des espèces fourragères qu'ils préfèrent. Cette étude montre clairement que les éléphants et les feux ont contribué significativement aux changements survenus dans les forêts de miombo de la région. [source]


    Post-fire regeneration of Mediterranean plant communities at a regional scale is dependent on vegetation type and dryness

    JOURNAL OF VEGETATION SCIENCE, Issue 1 2007
    Xavier Arnan
    Abstract Question: We tested whether (1) the change in composition and structure of whole plant communities after fire is directly related to regeneration of the dominant tree species in the canopy; (2) the change in structure and composition of plant communities several years after fire decreases with the proportion of obligate seeders and (3) the proportion of obligate seeders in plant communities increases with the dryness gradient. Location: Catalonia (NE Spain) Methods: We measured floristic differences between burned and long-since burned sites in eight vegetation types across a climate gradient. We compared 22 sites burnt in 1994 in paired plots with 22 sites that had not been burnt since the 1940s. In each site we placed plots in burned and long-since burned areas, where we identified the presence and abundance of all plant species. Results: When the tree canopy recovers, structure and composition of the vegetation also return to the long-since burned community; when tree canopy does not recover, composition of the post-fire community varies compared to the long-since burned one. A higher proportion of obligate seeders in the pre-fire community promotes quicker regeneration of the original community. The proportion of obligate seeders increased along the dryness gradient. Conclusions: Regeneration of plant communities after fire depends on the vegetation type before the fire. Regeneration increases when the dominant tree or shrub species persists after fire and with a higher proportion of obligate seeders in the pre-fire community. The proportion of obligate seeders varies along the dryness gradient, which suggests that vegetation in drier areas (when seeders are more abundant) recovers earlier than in moister areas. [source]


    ARTIFICIAL NEURAL NETWORK MODELING FOR REFORESTATION DESIGN THROUGH THE DOMINANT TREES BOLE-VOLUME ESTIMATION

    NATURAL RESOURCE MODELING, Issue 4 2009
    MARIA J. DIAMANTOPOULOU
    Abstract In the management of restoration reforestations or recreational reforestations of trees, the density of the planted trees and the site conditions can influence the growth and bole volume of the dominant tree. The ability to influence growth of these trees in a reforestation contributes greatly to the formation of large dimension trees and thereby to the production of commercially valuable wood. The potential of two artificial neural network (ANN) architectures in modeling the dominant,Pinus brutia,tree bole volume in reforestation configuration at 12 years of age was investigated: (1) the multilayer perceptron architecture using a back-propagation algorithm and (2) the cascade-correlation architecture, utilizing (a) either the nonlinear Kalman's filter theory or (b) the adaptive gradient descent learning rule. The incentive for developing bole-volume equations using ANN techniques was to demonstrate an alternative new methodology in the field of reforestation design, which would enable estimation and optimization of the bole volume of dominant trees in reforestations using easily measurable site and competition factors. The usage of the ANNs for the estimation of dominant tree bole volume through site and competition factors can be a very useful tool in forest management practice. [source]


    Spatial distribution and prediction of seed production by Eucalyptus microcarpa in a fragmented landscape

    AUSTRAL ECOLOGY, Issue 1 2010
    PETER A. VESK
    Abstract Woodlands worldwide have been greatly modified by clearing for agriculture, and their conservation and restoration requires understanding of tree recruitment processes. Seed production is one possible point of recruitment failure, and one that the spatial arrangement of trees may affect. We sampled 118 Eucalyptus microcarpa (Myrtaceae) trees to compare and analyse the determinants of seed production in this dominant tree of modified, fragmented temperate grassy woodlands, which extend over much of southeastern Australia. Fecundity was estimated as the seed crop measured on leaf mass and whole tree bases and was compared between categories of tree configuration. We also modelled fecundity using boosted regression trees, a new and flexible tool. Fecundity on a leaf mass basis was predominantly influenced by environmental factors (topographic ,wetness', slope, soil type), rather than by local tree density and configuration. Fewer seed per unit leaf mass were produced on flat and topographically wet sites, reflecting poor tolerance of waterlogging by E. microcarpa. By contrast, whole tree fecundity was little influenced by environmental factors. Local tree density and configuration did influence whole tree fecundity, which was high in solitary and woodland-spaced trees and reduced under high local density. We found little evidence for reduced fecundity of E. microcarpa in solitary trees. This points to the importance of scattered trees as sources of seed for tree recruitment and for natural regeneration of landscape level tree cover. Considerable uncertainty remains in modelled seed supply, and may be reduced with sampling across multiple years and greater environmental and spatial domains. [source]


    6000 years of forest dynamics in Suserup Skov, a seminatural Danish woodland

    GLOBAL ECOLOGY, Issue 2 2000
    Gina E. Hannon
    Abstract 1The history of a forest stand over the last 6000 years has been reconstructed by studying pollen, macrofossils and charcoal from a small, wet hollow in Suserup Skov on the island of Sjælland in eastern Denmark. 2The earliest recorded forest was Tilia -dominated but contained an intimate mixture of many different tree species that included Acer campestre, A. platanoides, Alnus glutinosa, Betula pubescens, Corylus avellana, Frangula alnus, Fraxinus excelsior, Malus sylvestris, Populus tremula, Pinus sylvestris, Quercus robur, Q. petraea, Salix spp., Sorbus aucuparia, Tilia cordata and T. platyphyllos. The preserved fruits of T. platyphyllos confirm its hitherto doubtful status as a native member of the Danish flora. 3The present-day woodland developed after a period of intensive anthropogenic disturbance between , 600 bc and ad 900, during which time open canopy conditions prevailed at Suserup. Fagus sylvatica and Fraxinus excelsior are the dominant trees at present, together with some Quercus robur and Ulmus glabra.4,Charcoal was present in the sediments from most time periods except at the Ulmus decline. In the last 1000 years of the sequence , the period of Fagus dominance , charcoal counts were consistently low. 5Pinus sylvestris was a natural component of this primarily deciduous forest, and the last macrofossil find dates from c. ad 900. Macrofossil Pinus cone scales recorded c. ad 1800 originate from planted individuals. Prior to Fagus dominance, the forest had an open structure partly caused by frequent, low-intensity fires associated with the presence of Pinus sylvestris. 6The replacement of Tilia by Fagus in this forest was catalysed by human activity. If the forest had not been so disturbed, the rich diversity of trees would most probably have persisted up to the present time, with only a moderate-sized Fagus population. [source]


    Efficacy of trap and lure types for detection of Agrilus planipennis (Col., Buprestidae) at low density

    JOURNAL OF APPLIED ENTOMOLOGY, Issue 4 2010
    J. M. Marshall
    Abstract Development of effective trapping tools for forest pests and evaluating the key components of these tools is necessary to locate early-stage infestations and develop management responses to them. Agrilus planipennis Fairmaire (emerald ash borer) is an introduced pest of ash (Fraxinus spp. L.) in North America. The effectiveness of different trap and lure combinations were tested in areas with low and high density populations of A. planipennis. At low density sites, purple prism traps outperformed green traps and girdled ash trap trees in capture rates (adults per day) and rates of detection of A. planipennis. Also, manuka oil lures, used as a standard lure in a national survey programme, captured higher rates of A. planipennis than did previous standards of girdled ash trap trees. There was no logistic relationship between the detection of A. planipennis on a trap and the diameter of the ash tree from which the trap was suspended, possibly because of the use of artificial lures with these traps. There was also no difference in the mean number of A. lanipennis captured per day between ash species and between vigour rating of ash associated with the traps. However, traps placed in open grown and dominant trees captured more beetles than traps placed in lower canopy class trees. At sites defined as low and high density, there was no difference in the larval density per cm3 of phloem. This suggests that exposure time to A. planipennis has been shorter at those low density sites. By exploiting the trap and tree characteristics that improve A. planipennis capture rates and detection efficacy, there can be future improvement in management of this pest. If detection can occur before infested ash trees exhibit signs and symptoms, there may be a potential for reducing the mortality of ash within stands. [source]


    Tree rings show competition dynamics in abandoned Castanea sativa coppices after land-use changes

    JOURNAL OF VEGETATION SCIENCE, Issue 1 2006
    Patrick Fonti
    Abstract Questions: As a consequence of socio-economic changes, many Castanea sativa coppices have been abandoned and are now developing past their usual rotation length. Do we have to expect changes in stand structure and composition of abandoned Castanea sativa coppice invaded by other species? Is a tree ring-based approach adequate to early recognise changes in inter-specific competitive interaction? Location: Lowest alpine forest belt of the southern Swiss Alps. Methods: We selected a 60-year old abandoned Castanea sativa coppice stand with sporadic Fagus sylvatica and Quercus cerris mixed in. Using tree-ring based indices we analysed differences in the species-specific response to competition. Analyses were performed by comparing how subject dominant trees (10 Castanea, 5 Fagus, 5 Quercus) have differently faced competition from their immediate Castanea coppice neighbourhood, taking into account the changes over time and space. Results: Although no species appears yet to have made a difference in the surrounding coppice mortality, there are species-specific differences in growth dominance, which indicate potential successional processes. Castanea sativa growth dominated in the early stages of stand development. However, after approximately 30,35 yr Fagus sylvatica and Quercus cerris became much more dominant, indicating a change in competitive potential that does not favour Castanea sativa. Conclusions: Without interventions this coppice will develop into a mixed stand. A tree-ring based approach allows an early recognition of forthcoming changes in stand composition and structure and is likely to be an important tool for forest landscape management. [source]


    ARTIFICIAL NEURAL NETWORK MODELING FOR REFORESTATION DESIGN THROUGH THE DOMINANT TREES BOLE-VOLUME ESTIMATION

    NATURAL RESOURCE MODELING, Issue 4 2009
    MARIA J. DIAMANTOPOULOU
    Abstract In the management of restoration reforestations or recreational reforestations of trees, the density of the planted trees and the site conditions can influence the growth and bole volume of the dominant tree. The ability to influence growth of these trees in a reforestation contributes greatly to the formation of large dimension trees and thereby to the production of commercially valuable wood. The potential of two artificial neural network (ANN) architectures in modeling the dominant,Pinus brutia,tree bole volume in reforestation configuration at 12 years of age was investigated: (1) the multilayer perceptron architecture using a back-propagation algorithm and (2) the cascade-correlation architecture, utilizing (a) either the nonlinear Kalman's filter theory or (b) the adaptive gradient descent learning rule. The incentive for developing bole-volume equations using ANN techniques was to demonstrate an alternative new methodology in the field of reforestation design, which would enable estimation and optimization of the bole volume of dominant trees in reforestations using easily measurable site and competition factors. The usage of the ANNs for the estimation of dominant tree bole volume through site and competition factors can be a very useful tool in forest management practice. [source]


    Litterfall dynamics and nitrogen use efficiency in two evergreen temperate rainforests of southern Chile

    AUSTRAL ECOLOGY, Issue 6 2003
    CECILIA A. PEREZ
    Abstract In unpolluted regions, where inorganic nitrogen (N) inputs from the atmosphere are minimal, such as remote locations in southern South America, litterfall dynamics and N use efficiency of tree species should be coupled to the internal N cycle of forest ecosystems. This hypothesis was examined in two evergreen temperate forests in southern Chile (42°30'S), a mixed broad-leaved forest (MBF) and a conifer forest (CF). Although these forests grow under the same climate and on the same parental material, they differ greatly in floristic structure and canopy dynamics (slower in the CF). In both forests, biomass, N flux, and C/N ratios of fine litterfall were measured monthly from May 1995 to March 1999. There was a continuous litter flux over the annual cycle in both forests, with a peak during autumn in the CF. In the MBF, litterfall decreased during spring. In both forests, the C/N ratios of litterfall varied over the annual cycle with a maximum in autumn. Annual litterfall biomass flux (Mean ± SD = 3.3 ± 0.5 vs 2.0 ± 0.5 Mg ha -1) and N return (34.8 ± 16 vs 9.1 ± 2.8 kg N ha -1) were higher in the MBF than in the CF. At the ecosystem level, litterfall C/N was lower in the MBF (mean C/N ratio = 60.1 ± 15, n= 3 years) suggesting decreased N use efficiency compared with CF (mean C/N ratio = 103 ± 19.6, n= 3 years). At the species level, subordinated (subcanopy) tree species in the MBF had significantly lower C/N ratios (<50) of litterfall than the dominant trees in the CF and MBF (>85). The litterfall C/N ratio and percentage N retranslocated were significantly correlated and were lower in the MBF. The higher net N mineralization in soils of the MBF is related to a lower N use efficiency at the ecosystem and species level. [source]