Home About us Contact | |||
Domain Containing Protein (domain + containing_protein)
Selected AbstractsIsolation and characterization of a novel Xenopus gene (xVAP019) encoding a DUF1208 domain containing proteinMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 12 2007Xu Zhi Ruan Abstract We have identified a novel Xenopus gene (xVAP019) encoding a DUF1208 domain containing protein. Using whole-mount in situ hybridization and RT-PCR, we found abundant xVAP019 maternal transcripts in the animal hemisphere during the cleavage stages and blastula stages. During gastrulation xVAP019 is differentially expressed with higher levels in the animal helf and the highest in marginal zone, then further expressed widely at neuronal stages with strongest signals in the prospective CNS regions and the epidermal ectoderm. Subsequently xVAP019 was expressed predominantly in the head, the eyes, the otic vesicle, branchial arches, spinal cord, notochord, somites, and tailbud. It is absent or very weak in the endoderm. Injecting a morpholino oligo complementary to xVAP019 mRNA or injecting a caped xVAP019 mRNA caused most of embryos to die during gastrulation and neurulation. Overexpression of xVAP019 mRNA also led to eye defect, shorten interocular distance, small body size and abnormal pigment formation in parts of the survival embryos. Similar effects were induced by injecting the xVAP019 human homologous gene FAM92A1. Our results suggest that xVAP019 is essential for the normal ectoderm and axis mesoderm differentiation and embryos survival. This investigation is for the first time in vivo study examining the role of this novel gene and reveals an important role of xVAP019 in embryonic development. Mol. Reprod. Dev. 74: 1505,1513, 2007. © 2007 Wiley-Liss, Inc. [source] Expression of Ht2 -related genes in response to the HT-Toxin of Exserohilum turcicum in MaizeANNALS OF APPLIED BIOLOGY, Issue 1 2010H. Wang Complementary DNA amplified fragment length polymorphism (cDNA-AFLP) analysis was conducted to analyze differential expression of Ht2 -related genes between maize (Zea mays) near-isogenic lines (NILs), Huangzaosi (HZS) and HuangzaosiHt2 (HZSHt2), following treatment with a crude extract of the HT-toxin. Twenty-one transcript-derived fragments (TDFs), designated H1 to H21, were specifically expressed or upregulated in HZSHt2 following exposure to the HT-toxin. Among them, 4, 7, 4, 2, 2 and 2 TDFs were detected at 3, 6, 12, 24, 48 and 72 h after treatment, respectively. BLAST analysis showed that H1, H11, H13 and H15 are related to regulation of the defence response to environmental stresses. H3, H6 and H10 are associated with energy metabolism. H5, H17 and H18 are involved in photosynthesis. H9 is similar to ubiquitin-like domain containing CTD phosphatase. H8, H9, H16 and H20 are probably transcription factors. The genes associated with basal energy metabolism and signal of stress tolerance were mainly expressed at 3 h after treatment. Transcription factor and most genes for stress tolerance were expressed at 6 h after treatment. RT-PCR analysis demonstrated that H8 was upregulated in HZSHt2 only at 6 h after exposure to the HT-toxin and H13 was upregulated at 6 and 12 h. The full length cDNAs of H8 (GenBank accession number FJ600319) and H13 (FJ600320) were cloned. The deduced protein encoded by H8 cDNA showed 77% homology to the Plus-3 domain containing protein, which is found in yeast gene Rtf1. H13 cDNA encodes a QM-like protein, which is an important protein in plant tolerance to environmental stress. The mechanism regulating the resistance of Ht2 to the HT-toxin might involve a translation elongation factor or an upregulated QM-like protein. [source] Expression of CUB domain containing protein (CDCP1) is correlated with prognosis and survival of patients with adenocarcinoma of lungCANCER SCIENCE, Issue 3 2009Jun-ichiro Ikeda CUB domain containing protein (CDCP1), a transmembrane protein with intracellular tyrosine residues which are phosphorylated upon activation, is supposed to be engaged in proliferative activities and resistance to apoptosis of cancer cells. Expression level of CDCP1 was examined in lung adenocarcinoma, and its clinical implications were evaluated. CDCP1 expression was immunohistochemically examined in lung adenocarcinoma from 200 patients. Staining intensity of cancer cells was categorized as low and high in cases with tumor cells showing no or weak and strong membrane staining, respectively. MIB-1 labeling index was also examined. There were 113 males and 87 females with median age of 63 years. Stage of disease was stage I in 144 cases (72.0%), II in 19 (9.5%), and III in 37 (18.5%). Sixty of 200 cases (30.0%) were categorized as CDCP1-high, and the remaining as CDCP1-low. Significant positive correlation was observed between CDCP1-high expression and relapse rate (P < 0.0001), poor prognosis (P < 0.0001), MIB-1 labeling index (P < 0.0001), and occurrence of lymph node metastasis (P = 0.0086). There was a statistically significant difference in disease-free survival (DFS) (P < 0.0001) and overall survival (OS) rates (P < 0.0001) between patients with CDCP1-high and CDCP1-low tumors. Univariate analysis showed that lymph node status, tumor stage, and CDCP1 expression were significant factors for both OS and DFS. Multivariate analysis revealed that only CDCP1 expression was an independent prognostic factor for both OS and DFS. CDCP1 expression level is a useful marker for prediction of patients with lung adenocarcinoma (Cancer Sci 2009; 100: 429,433). [source] Simultaneous quantification of cell motility and protein-membrane-association using active contoursCYTOSKELETON, Issue 4 2002Dirk Dormann Abstract We present a new method for the quantification of dynamic changes in fluorescence intensities at the cell membrane of moving cells. It is based on an active contour method for cell-edge detection, which allows tracking of changes in cell shape and position. Fluorescence intensities at specific cortical subregions can be followed in space and time and correlated with cell motility. The translocation of two GFP tagged proteins (CRAC and GRP1) from the cytosol to the membrane in response to stimulation with the chemoattractant cAMP during chemotaxis of Dictyostelium cells and studies of the spatio-temporal dynamics of this process exemplify the method: We show that the translocation can be correlated with motility parameters and that quantitative differences in the rate of association and dissociation from the membrane can be observed for the two PH domain containing proteins. The analysis of periodic CRAC translocation to the leading edge of a cell responding to natural cAMP waves in a mound demonstrates the power of this approach. It is not only capable of tracking the outline of cells within aggregates in front of a noisy background, but furthermore allows the construction of spatio-temporal polar plots, capturing the dynamics of the protein distribution at the cell membrane within the cells' moving co-ordinate system. Compilation of data by means of normalised polar plots is suggested as a future tool, which promises the so-far impossible practicability of extensive statistical studies and automated comparison of complex spatio-temporal protein distribution patterns. Cell Motil. Cytoskeleton 52:221,230, 2002. © 2002 Wiley-Liss, Inc. [source] Deletion of the PDZ motif of HPV16 E6 preventing immortalization and anchorage-independent growth in human tonsil epithelial cellsHEAD & NECK: JOURNAL FOR THE SCIENCES & SPECIALTIES OF THE HEAD AND NECK, Issue 2 2008William C. Spanos MD Abstract Background Human papillomavirus 16 (HPV16) has been associated with head and neck squamous cell carcinoma (HNSCC) in up to 60% of sampled specimens. Methods To understand better the viral genes required to transform human tonsil epithelial cells (HTEC), we isolated HTEC's and transduced them with retroviral vectors containing HPV16 E6 and E7. Results Immortalization and anchorage-independent growth of HTEC's only occurred with expression of E6 and E7 with resultant degradation of p53. However, cells expressing E6 lacking the PSD-95/disc-large/Zo-1 (PDZ) motif did not immortalize or grow anchorage independent. Telomerase activity and degradation of p53 were similar for wild-type and mutant E6. Conclusion The mechanism of oncogenic transformation by E6 in HTEC's is dependent on the PDZ binding motif. Identification of pathways affected by the interaction of E6 and PDZ domain containing proteins will further our understanding of how HPV causes HNSCC and will provide potential therapeutic targets. © 2007 Wiley Periodicals, Inc. Head Neck, 2008 [source] Distribution of serotonin receptors and interacting proteins in the human sigmoid colonNEUROGASTROENTEROLOGY & MOTILITY, Issue 5 2009N. Chetty Abstract, This study aimed to examine the distribution of 5-HT receptors in the human colon. 5-HT induces desensitization of the circular muscle and as this is facilitated by G-protein coupled receptor kinases (GRKs) and other proteins, we also examined their distribution. Human sigmoid colon samples were dissected into three separate layers (mucosa, taeniae coli and intertaenial strips) and RNA was amplified by RT-PCR. The 5-HT2B receptor and all 5-HT7 receptor splice variants were expressed in all tissues. 5-HT4 a,b,c and n splice variants were also expressed in all tissues and 5-HT4d, 5-HT4g and 5-HT4i were only detected in some samples. The 5-HT2A receptor was seen predominantly in the intertaenial strips of the colon. Only one transcript of the serotonin transporter (SERT) was detected in the muscle layers. Variation was seen in GRK expression with GRK2 and 3 predominantly expressed in the mucosa, while GRK5 and 6 were found more commonly in the taeniae coli. PDZ (named after postsynaptic density protein, Drosophila disc large tumour suppressor and tight junction protein ZO-1) domain containing proteins, which may be involved in 5-HT receptor trafficking, were also detected throughout the sigmoid colon. The 5-HT3A subunit was expressed in all tissues, whereas the 5-HT3E subunit was mainly found in the mucosa layer while the 5-HT3B subunit was more common in the muscle layers. Receptor interacting chaperone (RIC-3), which is involved in transporting 5-HT3 receptor subunits, is expressed less in mucosa compared to muscle layers. In conclusion, these results show that there is variation in distribution of 5-HT receptors and interacting proteins within the sigmoid colon that may contribute to colonic function. [source] |