Dog Breeds (dog + breed)

Distribution by Scientific Domains


Selected Abstracts


Genetic variability of seven dog breeds based on microsatellite markers

JOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 2005
C. Schelling
Summary The present study, compared the genetic variability of seven dog breeds and a test sample from Switzerland by means of 26 microsatellite markers. Five loci were excluded from further analyses because one was monomorphic, one not in Hardy,Weinberg equilibrium in all breeds and three in linkage disequilibrium with linked loci. The proportion of shared alleles at the individual level of the remaining 21 microsatellite markers combined with the neighbour-joining method allowed for the clustering of the large majority of the individuals in accordance to their breed. The results were confirmed by analyses using a Bayesian approach for clustering and a Monte Carlo re-sampling method for individual assignment or exclusion to a given population. [source]


A canine linkage map: 39 linkage groups

JOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 1 2001
F. Lingaas
A low resolution canine marker map is an important tool in the further advancements in genetic analysis of dog breeds and the control and reduction of the frequency of inherited diseases. This study presents a genetic linkage analysis with 39 linkage groups using 222 polymorphic canine markers based on typing in the International DogMap reference families, consisting of 129 Beagle and German Shepherd dogs. Of these 39 linkage groups, 14 have been assigned to canine chromosomes by fluorescence in-situ hybridization (FISH). These results are a further refinement on the first linkage groups from the International DogMap collaboration and represent a continuing collaboration. Eine Markerkarte des Hundes mit 39 Kopplungsgruppen Schwach auflösende Markerkarten des Genoms stellen wichtige Hilfsmittel für die genetische Charakterisierung von Hunderassen dar. Sie können für die Kontrolle und Eindämmung von Erbkrankheiten verwendet werden. Die Resultate der vorgestellten Studie basieren auf der genetischen Typisierung von Hundefamilien des Internationalen DogMap Konsortiums. Die Familien bestehen aus 129 Beagle und Deutschen Schäferhunden. Die Studie stellt eine Kopplungsanalyse mit 39 Kopplungsgruppen vor, die insgesamt 1216 cM des Hundegenoms abdecken. Die Markerkarte enthält 222 polymorphe Hundemarker von denen 18 Gene sind. Fünfundachtzig Marker sind in keiner anderen Markerkarte publiziert. Vierzehn Kopplungsgruppen konnten mittels FISH chromosomal zugewiesen werden. Unsere Resultate stellen eine weitere Verfeinerung der ersten Markerkarte des DogMap Projektes dar und sind Ausdruck einer kontinuierlichen internationalen Zusammenarbeit. [source]


Association analysis between canine behavioural traits and genetic polymorphisms in the Shiba Inu breed

ANIMAL GENETICS, Issue 5 2009
Y. Takeuchi
Summary The relationships between behavioural trait data and the genotype of 15 polymorphisms in eight neurotransmitter-related genes were analysed in 77 dogs of the Shiba Inu breed, an indigenous Japanese dog. The data were obtained from a 26-item questionnaire on the dog's behaviour, distributed to the dog's owners, through veterinary hospitals and the Shiba Inu breed magazine. A factor analysis of the questionnaire items extracted eight factors accounting for 66.8% of the variance. An association analysis between these factors and genetic polymorphisms indicated that the polymorphism of c.471T>C in the solute carrier family 1 (neuronal/epithelial high-affinity glutamate transporter) member 2 (SLC1A2) gene was significantly associated with Factor 1, referred to as ,aggression to strangers'. This association remained stable in separate analyses of data from surveys obtained from the hospitals and those obtained from the magazine. The results suggest that the c.471T>C polymorphism is associated with some types of aggressive behaviour in the Shiba Inu. Further studies using other dog breeds are necessary to extend these findings to dogs in general. [source]


Molecular structure in peripheral dog breeds: Portuguese native breeds as a case study

ANIMAL GENETICS, Issue 4 2009
A. E. Pires
Summary Genetic variability in purebred dogs is known to be highly structured, with differences among breeds accounting for ,30% of the genetic variation. However, analysis of the genetic structure in non-cosmopolitan breeds and local populations is still limited. Nine Portuguese native dog breeds, and other peripheral dog populations (five) with regional affinities, were characterized using 16 microsatellites and 225 amplified fragment length polymorphism (AFLP) markers, and the pattern of genetic differentiation was investigated. Although the level of breed differentiation detected is below that of other dog breeds, there is in most cases a correlation between breed affiliation and molecular structure. AFLP markers and Bayesian clustering methods allowed an average of 73.1% of individuals to be correctly assigned to source populations, providing robust genotypic assessment of breed affiliation. A geographical genetic structure was also detected, which suggests a limited influence of African dogs on the Iberian breeds. The sampling effect on the estimation of population structure was evaluated and there was a 2.2% decrease in genetic differentiation among breeds when working animals were included. Genetic diversity of stray dogs was also assessed and there is no evidence that they pose a threat to the preservation of the gene pool of native dog breeds. [source]


Genetic diversity of dog breeds: within-breed diversity comparing genealogical and molecular data

ANIMAL GENETICS, Issue 3 2009
G. Leroy
Summary The genetic diversity of 61 dog breeds raised in France was investigated. Genealogical analyses were performed on the pedigree file of the French kennel club. A total of 1514 dogs were also genotyped using 21 microsatellite markers. For animals born from 2001 to 2005, the average coefficient of inbreeding ranged from 0.2% to 8.8% and the effective number of ancestors ranged from 9 to 209, according to the breed. The mean value of heterozygosity was 0.62 over all breeds (range 0.37,0.77). At the breed level, few correlations were found between genealogical and molecular parameters. Kinship coefficients and individual similarity estimators were, however, significantly correlated, with the best mean correlation being found for the Lynch & Ritland estimator (r = 0.43). According to both approaches, it was concluded that special efforts should be made to maintain diversity for three breeds, namely the Berger des Pyrénées, Braque Saint-Germain and Bull Terrier. [source]


Genetic diversity of dog breeds: between-breed diversity, breed assignation and conservation approaches

ANIMAL GENETICS, Issue 3 2009
G. Leroy
Summary Genetic relationships between 61 dog breeds were investigated, using a sampling of 1514 animals and a panel of 21 microsatellite markers. Based on the results from distance-based and Bayesian methods, breed constituted the main genetic structure, while groups including genetically close breeds showed a very weak structure. Depending on the method used, between 85.7% and 98.3% of dogs could be assigned to their breed, with large variations according to the breed. However, breed heterozygosity influenced assignment results differently according to the method used. Within-breed and between-breed diversity variations when breeds were removed were highly negatively correlated (r = ,0.963, P < 0.0001), because of the genetic structure of the breed set. [source]


Genetic differentiation in pointing dog breeds inferred from microsatellites and mitochondrial DNA sequence

ANIMAL GENETICS, Issue 1 2008
D. Parra
Summary Recent studies presenting genetic analysis of dog breeds do not focus specifically on genetic relationships among pointing dog breeds, although hunting was among the first traits of interest when dogs were domesticated. This report compares histories with genetic relationships among five modern breeds of pointing dogs (English Setter, English Pointer, Epagneul Breton, Deutsch Drahthaar and German Shorthaired Pointer) collected in Spain using mitochondrial, autosomal and Y-chromosome information. We identified 236 alleles in autosomal microsatellites, four Y-chromosome haplotypes and 18 mitochondrial haplotypes. Average FST values were 11.2, 14.4 and 13.1 for autosomal, Y-chromosome microsatellite markers and mtDNA sequence respectively, reflecting relatively high genetic differentiation among breeds. The high gene diversity observed in the pointing breeds (61.7,68.2) suggests contributions from genetically different individuals, but that these individuals originated from the same ancestors. The modern English Setter, thought to have arisen from the Old Spanish Pointer, was the first breed to cluster independently when using autosomal markers and seems to share a common maternal origin with the English Pointer and German Shorthaired Pointer, either via common domestic breed females in the British Isles or through the Old Spanish Pointer females taken to the British Isles in the 14th and 16th centuries. Analysis of mitochondrial DNA sequence indicates the isolation of the Epagneul Breton, which has been formally documented, and shows Deutsch Drahthaar as the result of crossing the German Shorthaired Pointer with other breeds. Our molecular data are consistent with historical documents. [source]


Identification of a novel germline MET mutation in dogs

ANIMAL GENETICS, Issue 3 2006
A.T. Liao
Summary The MET proto-oncogene encodes a transmembrane tyrosine kinase receptor that mediates multiple functions such as migration, cycling and survival by binding to hepatocyte growth factor (HGF). Dysregulation of MET through inappropriate expression or mutation has been shown to play an important role in human cancers. Furthermore, inherited mutations in MET are known to contribute to the development of gastric and renal cancer in humans. Lastly, mouse models of MET mutations lead to the development of a wide variety of cancers including lymphomas, sarcomas and some forms of carcinoma. In the process of cloning canine MET, a novel germline point mutation was found in the juxtamembrane domain (G966S) in two of the templates used for cloning, both of which were derived from Rottweiler dogs, a breed believed to be at high risk for the development of several cancers. Screening of germline DNA from a variety of breeds revealed that this mutation was present in approximately 70% of Rottweiler dogs and <5% of all other breeds examined, suggesting a breed-specific heritable mutation. Stable transfection of the G966S mutant form of MET into NIH3T3 cells resulted in enhanced baseline scattering and migration of the cells, which was further increased in the presence of HGF. This study supports the notion that particular dog breeds may carry germline mutations that contribute to high rates of cancer in a manner similar to heritable, cancer-associated mutations in humans. [source]


Within-breed heterozygosity of canine single nucleotide polymorphisms identified by across-breed comparison

ANIMAL GENETICS, Issue 6 2002
J. A. Brouillette
Summary Identification of single nucleotide polymorphisms (SNPs) by DNA sequence comparison across breeds is a strategy for developing genetic markers that are useful for many breeds. However, the heterozygosity of SNPs identified in this way might be severely reduced within breeds by inbreeding or genetic drift in the small effective population size of a breed (population subdivision). The effect of inbreeding and population subdivision on heterozygosity of SNPs in dog breeds has never been investigated in a systematic way. We determined the genotypes of dogs from three divergent breeds for SNPs in four canine genes (ACTC, LMNA, SCGB, and TYMS) identified by across-breed DNA sequence comparison, and compared the genotype frequencies to those expected under Hardy,Weinberg equilibrium (HWE). Although population subdivision significantly skewed allele frequencies across breeds for two of the SNPs, the deviations of observed heterozygosities compared with those expected within breeds were minimal. These results indicate that across-breed DNA sequence comparison is a reasonable strategy for identifying SNPs that are useful within many canine breeds. [source]


Evaluation of RDS/Peripherin and ROM1 as candidate genes in generalised progressive retinal atrophy and exclusion of digenic inheritance

ANIMAL GENETICS, Issue 3 2000
M Runte
Summary Generalised progressive retinal atrophy (gPRA) is a heterogeneous group of hereditary diseases causing degeneration of the retina in dogs and cats. As a combination of mutations in theRDS/Peripherin and the ROM1 genes leads to the phenotype of retinitis pigmentosa in man we first performed mutation analysis to screen these genes for disease causing mutations followed by the investigation of a digenic inheritance in dogs. We cloned the RDS/Peripherin gene and investigated the RDS/Peripherin and ROM1 genes for disease causing mutations in 13 gPRA-affected dog breeds including healthy animals, obligate gPRA carriers and gPRA-affected dogs. We screened for mutations using single strand conformation polymorphism (SSCP) analysis. Sequence analysis revealed several sequence variations. In the coding region of the RDS/Peripherin gene three nucleotide exchanges were identified (A277C; C316T; G1255A), one of which leads to an amino acid substitution (Ala339Thr). Various silent sequence variations were found in the coding region of the ROM1 gene (A536G, G1006A, T1018C, T1111C, C1150T, C1195T), as well as an amino acid substitution (G252T; Ala54Ser). By excluding the respective gene as a cause for gPRA several sequence variations in the intronic regions were investigated. None of these sequence variations cosegregated with autosomal recessively (ar) transmitted gPRA in 11 breeds. The candidate geneRDS/Peripherin obviously does not harbour the critical mutation causing the autosomal recessive form of gPRA because diseased individuals show heterozygous genotypes for sequence variations in the Miniature Poodle, Dachshund, Australian Cattle Dog, Cocker Spaniel, Chesapeake Bay Retriever, Entlebucher Sennenhund, Sloughi, Yorkshire Terrier, Tibet Mastiff, Tibet Terrier and Labrador Retriever breeds. In the following breeds the ROM1 gene was also excluded indirectly for gPRA: Miniature Poodle, Dachshund, Australian Cattle Dog, Sloughi, Collie, Tibet Terrier, Labrador Retriever and Saarloos/Wolfhound. Digenic inheritance for gPRA is practically excluded for both these genes in four breeds: Miniature Poodle, Dachshund, Labrador Retriever and Saarloos/Wolfhound. [source]


The complete genome sequence of a dog: a perspective

BIOESSAYS, Issue 6 2006
Soohyun Lee
A complete, high-quality reference sequence of a dog genome was recently produced by a team of researchers led by the Broad Institute, achieving another major milestone in deciphering the genomic landscape of mammalian organisms. The genome sequence provides an indispensable resource for comparative analysis and novel insights into dog and human evolution and history. Together with the survey sequence of a poodle previously published in 2003, the two dog genome sequences allowed identification of more than 2.5 million single nucleotide polymorphisms within and between dog breeds, which can be used in evolutionary analysis, behavioral studies and disease gene mapping.1 © 2005 Wiley Periodicals, Inc. BioEssays 28: 569,573, 2006. © 2006 Wiley Periodicals, Inc. [source]


Transglutaminase 1-deficient recessive lamellar ichthyosis associated with a LINE-1 insertion in Jack Russell terrier dogs

BRITISH JOURNAL OF DERMATOLOGY, Issue 2 2009
K.M. Credille
Summary Background, Congenital, nonepidermolytic cornification disorders phenotypically resembling human autosomal recessive ichthyosis have been described in purebred dog breeds, including Jack Russell terrier (JRT) dogs. One cause of gene mutation important to humans and dogs is transposon insertions. Objectives, To describe an autosomal recessive, severe nonepidermolytic ichthyosis resembling lamellar ichthyosis (LI) in JRT dogs due to insertion of a long interspersed nucleotide element (LINE-1) in the transglutaminase 1 (TGM1) gene. Methods, Dogs were evaluated clinically, and skin samples were examined by light and electron microscopy. Phenotypic information and genotyping with a canine microsatellite marker suggested TGM1 to be a candidate gene. Genomic DNA samples and cDNA generated from epidermal RNA were examined. Consequences of the mutation were evaluated by Western blotting, quantitative reverse transcription-polymerase chain reaction (RT-PCR) and enzyme activity from cultured keratinocytes. Results, Affected dogs had generalized severe hyperkeratosis. Histological examination defined laminated to compact hyperkeratosis without epidermolysis; ultrastructurally, cornified envelopes were thin. Affected dogs were homozygous for a 1980-bp insertion within intron 9 of TGM1. The sequence of the insertion was that of a canine LINE-1 element. Quantitative RT-PCR indicated a significant decrease in TGM1 mRNA in affected dogs compared with wild-type. TGM1 protein was markedly decreased on immunoblotting, and membrane-associated enzyme activity was diminished in affected dogs. Conclusions, Based on morphological and molecular features, this disease is homologous with TGM1-deficient LI in humans, clinically models LI better than the genetically modified mouse and represents its first spontaneous animal model. This is the first reported form of LI due to transposon insertion. [source]