Docosapentaenoic Acid (docosapentaenoic + acid)

Distribution by Scientific Domains


Selected Abstracts


Pharmacokinetics of Dietary 13C-Labeled Docosahexaenoic Acid and Docosapentaenoic Acid in Red Sea Bream Chrysophrys major

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 2 2002
Akio Tago
The objectives of this study were to investigate: 1) the pharmacokinetics of dietary docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) using 13C-labeled fatty acids; 2) the interorgan transport of DHA in the red sea bream by monitoring the DHA level of several organs; and 3) the relationship between the plasma DHA level and optimum dietary DHA level in the plasma of the red sea bream Chrysophrys major. For this purpose, a mixture of 38.5% of [13C]DHA, 8.5% of [13C]DPA, and 4.2% of [13C]palmitic acid were given to the red sea bream at dose level of 8.0, 16.0, and 47.9 mg/kg by a single oral administration. For [13C]DHA, the maximum plasma concentration (tmax) occurred at 2.00,3.00 h after the oral administration. The peak plasma concentration (Cmax) and the area under the plasma concentration-time curve to 24 h (AUC0-24 for [13C]DHA level linearly increased with respect to dosage. [13C]DHA appeared in each organ (plasma, erythrocyte and the fat body of the orbit, liver, intestine, skin, brain, heart and muscle) at 0.5 h and was observed until 24 h. From the values determined for the pharmacokinetic parameters, the range of the effective plasma DHA level for normal growth of the red sea bream was suggested to be between 21.0 and 40.3 ,g/mL. For [13C]DPA, the AUC0-24 and Cmax values also linearly increased with the dosage, but tmax did not depend on it. [source]


Nutritional Deprivation of ,-Linolenic Acid Decreases but Does Not Abolish Turnover and Availability of Unacylated Docosahexaenoic Acid and Docosahexaenoyl-CoA in Rat Brain

JOURNAL OF NEUROCHEMISTRY, Issue 6 2000
Miguel A. Contreras
Abstract: We applied our in vivo fatty acid method to examine concentrations, incorporation, and turnover rates of docosahexaenoic acid (22:6 n-3) in brains of rats subject to a dietary deficiency of ,-linolenic acid (18:3 n-3) for three generations. Adult deficient and adequate rats of the F3 generation were infused intravenously with [4,5- 3H]docosahexaenoic acid over 5 min, after which brain uptake and distribution of tracer were measured. Before infusion, the plasma 22:6 n-3 level was 0.2 nmol ml -1 in 18:3 n-3-deficient compared with 10.6 nmol ml -1 in control rats. Brain unesterified 22:6 n-3 was not detectable, whereas docosahexaenoyl-CoA content was reduced by 95%, and 22:6 n-3 content in different phospholipid classes was reduced by 83-88% in deficient rats. Neither plasma or brain arachidonic acid (20:4 n-6) level was significantly changed with diet. Docosapentaenoic acid (22:5 n-6) reciprocally replaced 22:6 n-3 in brain phospholipids. Calculations using operational equations from our model indicated that 22:6 n-3 incorporation from plasma into brain was reduced 40-fold by 18:3 n-3 deficiency. Recycling of 22:6 n-3 due to deacylation-reacylation within phospholipids was reduced by 30-70% with the deficient diet, but animals nevertheless continued to produce 22:6 n-3 and docosahexaenoyl-CoA for brain function. We propose that functional brain effects of n-3 deficiency reflect altered ratios of n-6 to n-3 fatty acids. [source]


Plasma lipids and inflammation in active inflammatory bowel diseases

ALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 3 2009
G. ROMANATO
Summary Background, Ulcerative colitis (UC) and Crohn's disease (CD) can cause metabolic and inflammatory alterations. Aim, To evaluate the relationships between inflammatory parameters, plasma lipids and phospholipid fatty acid (FA) composition in patients with active UC and CD. Methods, Diet, the Harvey,Bradshaw Activity Index (HBAI), inflammatory parameters, lipoproteins and FA composition were assessed in 60 CD and 34 UC. Results, No differences in clinical parameters were observed in the two groups. Total cholesterol correlated inversely with the number of bowel movements in both groups and directly with BMI in UC. Arachidonic acid correlated inversely with HBAI in UC and total and HDL cholesterol were inversely related to C-reactive protein (CRP) in CD while HDL correlated with CRP in UC. Docosapentaenoic acid was the only polyunsaturated n -3 FA that was correlated to CRP in both groups. Total cholesterol was independently associated in the multiple regression analysis with the number of bowel movements and systemic inflammation. Conclusions, Total and LDL cholesterol were lower in the active UC and CD than in the healthy subjects and were correlated with the systemic inflammatory status. Phospholipid FA composition was correlated to the systemic inflammatory status, but was unrelated to dietary intake and intestinal disease activity. [source]


LIPID COMPOSITION OF CHLORARACHNIOPHYTES (CHLORARACHNIOPHYCEAE) FROM THE GENERA BIGELOWIELLA, GYMNOCHLORA, AND LOTHARELLA,

JOURNAL OF PHYCOLOGY, Issue 2 2005
Jeffrey D. Leblond
The Chlorarachniophyceae are unicellular eukaryotic algae characterized by an amoeboid morphology that may be the result of secondary endosymbiosis of a green alga by a nonphotosynthetic amoeba or amoeboflagellate. Whereas much is known about the phylogeny of chlorarachniophytes, little is known about their physiology, particularly that of their lipids. In an initial effort to characterize the lipids of this algal class, four organisms from three genera were examined for their fatty acid and sterol composition. Fatty acids from lipid fractions containing chloroplast-associated glycolipids, storage triglycerides, and cytoplasmic membrane-associated polar lipids were characterized. Glycolipid-associated fatty acids were of limited composition, principally eicosapentaenoic acid [20:5(n-3)] and hexadecanoic acid (16:0). Triglyceride-associated fatty acids, although minor, were found to be similar in composition. The polar lipid fraction was dominated by lipids that did not contain phosphorus and had a more variable fatty acid composition with 16:0 and docosapentaenoic acid [22:5(n-3)] dominant along with a number of minor C18 and C20 fatty acids. Crinosterol and one of the epimeric pair poriferasterol/stigmasterol were the sole sterols. Several genes required for synthesis of these sterols were computationally identified in Bigelowiella natans Moestrup. One sterol biosynthesis gene showed the greatest similarity to SMT1 of the green alga, Chlamydomonas reinhardtii. However, homologues to other species, mostly green plant species, were also found. Further, the method used for identification suggested that the sequences were transferred to a genetic compartment other than the likely original location, the nucleomorph nucleus. [source]


28 Lipid composition of members of the algal class chlorarachniophyceae

JOURNAL OF PHYCOLOGY, Issue 2003
J. L. Dahmen
The algal class Chlorarachniophyceae is comprised of a small group of unicellular eukaryotic algae that are often characterized by an unusual amoeboid morphology. This morphology is hypothesized to be the result of a secondary endosymbiosis in which a green alga was engulfed as prey by a nonphotosynthetic amoeba or amoebaflagellate. Whereas much is known about the phylogenetic relationships of individual chlorarachniophytes to one another, and to possible ancestral host organisms in the genera Cercomonas and Heteromita, little is known about their physiology, particularly that of their lipids. In an initial effort to characterize the lipids of this algal class, seven organisms were examined for their fatty acid and sterol composition. These included Bigelowiella natans, Chlorarachnion globusum, Chlorarachnion reptans, Gymnochlora stellata, Lotharella amoeboformis, Lotharella globosa, and Lotharella sp. Fatty acids associated with chloroplast-associated glycolipids, cytoplasmic membrane-associated phospholipids, and storage triglycerides were characterized. Glycolipid fatty acids were found to be of limited composition, containing principally eicosapentaenoic acid [20:5(n-3)] and hexadecanoic acid (16:0), which ranged in relative percentage from 67,90% and 10,29%, respectively, in these seven organisms. Triglyceride-associated fatty acids were found to be similar. Phospholipid fatty acid composition was more variable. The principal phospholipid fatty acids, 16:0 (25,32%) and a compound tentatively identified as docosapentaenoic acid [22:5(n-3)] (26,35%), were found along with a number of C18 and C20 fatty acids. All organisms contained two sterols as free sterols. These were tentatively identified as 24-ethylcholesta-5,22E-dien-3b-ol (stigmasterol; 70,95%) and 24-methylcholesta-5,22E-dien-3b-ol (brassicasterol; 5,30%). [source]


Ethanol Consumption Alters Electroretinograms and Depletes Neural Tissues of Docosahexaenoic Acid in Rhesus Monkeys: Nutritional Consequences of a Low n-3 Fatty Acid Diet

ALCOHOLISM, Issue 12 2001
Robert J. Pawlosky
Background: Alcohol amblyopia is a rare neuropathy characterized by the development of blurred vision and a reduction in visual acuity. Further diagnostic details of this condition have shown abnormalities in the electroretinogram (ERG) that include an increase in implicit times in the a- and b-waves and a depression of b-wave amplitude. Methods: Periodically, the ERGs and the fatty acyl composition of nervous tissue were analyzed from alcohol-consuming rhesus monkeys (Macaca mulatta) (mean consumption 2.6 g kg/day over a 5-year period) and controls that were maintained on a nutritionally sufficient diet that had low, yet adequate, amounts of linoleic acid but very low ,-linolenic acid. Results: Animals consuming alcohol had increased a- and b-wave implicit times and decreased b-wave amplitudes in their electroretinograms compared with those of the dietary control group at 2.5 and 5 years. The fatty acyl composition of brain specimens obtained by surgical biopsy at baseline, 2.5 years, and 5 years demonstrated that docosahexaenoic acid (DHA) had decreased in both groups of animals compared with baseline values. In the brains of the alcohol-treated animals, DHA was even further decreased (2.5 years: ,20%; 5 years: ,33%) compared with the diet controls. In the retinas of the alcohol-consuming animals at 5 years, there was a similar decrease in DHA (-35%) compared with controls. Generally, the n-6 fatty acid, docosapentaenoic acid (DPAn-6) increased in these tissues, apparently compensating for the loss of DHA. Conclusions: A reciprocal change in the DHA/DPAn-6 ratio is known to be associated with abnormal electroretinograms in a number of species. Thus, a marginal intake of n-3 fatty acids in some alcohol abusers may, in part, be responsible for the biochemical changes that underlie the diminished retinal function associated with the visual abnormalities observed in alcohol-amblyopic patients. [source]


Pharmacokinetics of Dietary 13C-Labeled Docosahexaenoic Acid and Docosapentaenoic Acid in Red Sea Bream Chrysophrys major

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 2 2002
Akio Tago
The objectives of this study were to investigate: 1) the pharmacokinetics of dietary docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) using 13C-labeled fatty acids; 2) the interorgan transport of DHA in the red sea bream by monitoring the DHA level of several organs; and 3) the relationship between the plasma DHA level and optimum dietary DHA level in the plasma of the red sea bream Chrysophrys major. For this purpose, a mixture of 38.5% of [13C]DHA, 8.5% of [13C]DPA, and 4.2% of [13C]palmitic acid were given to the red sea bream at dose level of 8.0, 16.0, and 47.9 mg/kg by a single oral administration. For [13C]DHA, the maximum plasma concentration (tmax) occurred at 2.00,3.00 h after the oral administration. The peak plasma concentration (Cmax) and the area under the plasma concentration-time curve to 24 h (AUC0-24 for [13C]DHA level linearly increased with respect to dosage. [13C]DHA appeared in each organ (plasma, erythrocyte and the fat body of the orbit, liver, intestine, skin, brain, heart and muscle) at 0.5 h and was observed until 24 h. From the values determined for the pharmacokinetic parameters, the range of the effective plasma DHA level for normal growth of the red sea bream was suggested to be between 21.0 and 40.3 ,g/mL. For [13C]DPA, the AUC0-24 and Cmax values also linearly increased with the dosage, but tmax did not depend on it. [source]


Randomized, placebo-controlled trial of flax oil in pediatric bipolar disorder

BIPOLAR DISORDERS, Issue 2 2010
Barbara L Gracious
Gracious BL, Chirieac MC, Costescu S, Finucane TL, Youngstrom EA, Hibbeln JR. Randomized, placebo-controlled trial of flax oil in pediatric bipolar disorder. Bipolar Disord 2010: 12: 142,154. © 2010 The Authors. Journal compilation © 2010 John Wiley & Sons A/S. Objectives:, This clinical trial evaluated whether supplementation with flax oil, containing the omega-3 fatty acid ,-linolenic acid (,-LNA), safely reduced symptom severity in youth with bipolar disorder. Methods:, Children and adolescents aged 6,17 years with symptomatic bipolar I or bipolar II disorder (n = 51), manic, hypomanic, mixed, or depressed, were randomized to either flax oil capsules containing 550 mg ,-LNA per 1 gram or an olive oil placebo adjunctively or as monotherapy. Doses were titrated to 12 capsules per day as tolerated over 16 weeks. Primary outcomes included changes in the Young Mania Rating Scale, Child Depression Rating Scale-Revised, and Clinical Global Impressions-Bipolar ratings using Kaplan-Meier survival analyses. Results:, There were no significant differences in primary outcome measures when compared by treatment assignment. However, clinician-rated Global Symptom Severity was negatively correlated with final serum omega-3 fatty acid compositions: %,-LNA (r = ,0.45, p < 0.007), % eicosapentaenoic acid (EPA) (r = ,0.47, p < 0.005); and positively correlated with final arachidonic acid (AA) (r = 0.36, p < 0.05) and docosapentaenoic acid (DPA) n-6 (r = 0.48, p < 0.004). The mean duration of treatment for ,-LNA was 11.8 weeks versus 8 weeks for placebo; however, the longer treatment duration for ,-LNA was not significant after controlling for baseline variables. Subjects discontinued the study for continued depressive symptoms. Conclusions:, Studies of essential fatty acid supplementation are feasible and well tolerated in the pediatric population. Although flax oil may decrease severity of illness in children and adolescents with bipolar disorder who have meaningful increases in serum EPA percent levels and/or decreased AA and DPA n-6 levels, individual variations in conversion of ,-LNA to EPA and docosahexaenoic acid as well as dosing burden favor the use of fish oil both for clinical trials and clinical practice. Additionally, future research should focus on adherence and analysis of outcome based on changes in essential fatty acid tissue compositions, as opposed to group randomization alone. [source]