Docosahexaenoic Acid (docosahexaenoic + acid)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Nutritional Deprivation of ,-Linolenic Acid Decreases but Does Not Abolish Turnover and Availability of Unacylated Docosahexaenoic Acid and Docosahexaenoyl-CoA in Rat Brain

JOURNAL OF NEUROCHEMISTRY, Issue 6 2000
Miguel A. Contreras
Abstract: We applied our in vivo fatty acid method to examine concentrations, incorporation, and turnover rates of docosahexaenoic acid (22:6 n-3) in brains of rats subject to a dietary deficiency of ,-linolenic acid (18:3 n-3) for three generations. Adult deficient and adequate rats of the F3 generation were infused intravenously with [4,5- 3H]docosahexaenoic acid over 5 min, after which brain uptake and distribution of tracer were measured. Before infusion, the plasma 22:6 n-3 level was 0.2 nmol ml -1 in 18:3 n-3-deficient compared with 10.6 nmol ml -1 in control rats. Brain unesterified 22:6 n-3 was not detectable, whereas docosahexaenoyl-CoA content was reduced by 95%, and 22:6 n-3 content in different phospholipid classes was reduced by 83-88% in deficient rats. Neither plasma or brain arachidonic acid (20:4 n-6) level was significantly changed with diet. Docosapentaenoic acid (22:5 n-6) reciprocally replaced 22:6 n-3 in brain phospholipids. Calculations using operational equations from our model indicated that 22:6 n-3 incorporation from plasma into brain was reduced 40-fold by 18:3 n-3 deficiency. Recycling of 22:6 n-3 due to deacylation-reacylation within phospholipids was reduced by 30-70% with the deficient diet, but animals nevertheless continued to produce 22:6 n-3 and docosahexaenoyl-CoA for brain function. We propose that functional brain effects of n-3 deficiency reflect altered ratios of n-6 to n-3 fatty acids. [source]


Ethanol Consumption Alters Electroretinograms and Depletes Neural Tissues of Docosahexaenoic Acid in Rhesus Monkeys: Nutritional Consequences of a Low n-3 Fatty Acid Diet

ALCOHOLISM, Issue 12 2001
Robert J. Pawlosky
Background: Alcohol amblyopia is a rare neuropathy characterized by the development of blurred vision and a reduction in visual acuity. Further diagnostic details of this condition have shown abnormalities in the electroretinogram (ERG) that include an increase in implicit times in the a- and b-waves and a depression of b-wave amplitude. Methods: Periodically, the ERGs and the fatty acyl composition of nervous tissue were analyzed from alcohol-consuming rhesus monkeys (Macaca mulatta) (mean consumption 2.6 g kg/day over a 5-year period) and controls that were maintained on a nutritionally sufficient diet that had low, yet adequate, amounts of linoleic acid but very low ,-linolenic acid. Results: Animals consuming alcohol had increased a- and b-wave implicit times and decreased b-wave amplitudes in their electroretinograms compared with those of the dietary control group at 2.5 and 5 years. The fatty acyl composition of brain specimens obtained by surgical biopsy at baseline, 2.5 years, and 5 years demonstrated that docosahexaenoic acid (DHA) had decreased in both groups of animals compared with baseline values. In the brains of the alcohol-treated animals, DHA was even further decreased (2.5 years: ,20%; 5 years: ,33%) compared with the diet controls. In the retinas of the alcohol-consuming animals at 5 years, there was a similar decrease in DHA (-35%) compared with controls. Generally, the n-6 fatty acid, docosapentaenoic acid (DPAn-6) increased in these tissues, apparently compensating for the loss of DHA. Conclusions: A reciprocal change in the DHA/DPAn-6 ratio is known to be associated with abnormal electroretinograms in a number of species. Thus, a marginal intake of n-3 fatty acids in some alcohol abusers may, in part, be responsible for the biochemical changes that underlie the diminished retinal function associated with the visual abnormalities observed in alcohol-amblyopic patients. [source]


Pharmacokinetics of Dietary 13C-Labeled Docosahexaenoic Acid and Docosapentaenoic Acid in Red Sea Bream Chrysophrys major

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 2 2002
Akio Tago
The objectives of this study were to investigate: 1) the pharmacokinetics of dietary docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) using 13C-labeled fatty acids; 2) the interorgan transport of DHA in the red sea bream by monitoring the DHA level of several organs; and 3) the relationship between the plasma DHA level and optimum dietary DHA level in the plasma of the red sea bream Chrysophrys major. For this purpose, a mixture of 38.5% of [13C]DHA, 8.5% of [13C]DPA, and 4.2% of [13C]palmitic acid were given to the red sea bream at dose level of 8.0, 16.0, and 47.9 mg/kg by a single oral administration. For [13C]DHA, the maximum plasma concentration (tmax) occurred at 2.00,3.00 h after the oral administration. The peak plasma concentration (Cmax) and the area under the plasma concentration-time curve to 24 h (AUC0-24 for [13C]DHA level linearly increased with respect to dosage. [13C]DHA appeared in each organ (plasma, erythrocyte and the fat body of the orbit, liver, intestine, skin, brain, heart and muscle) at 0.5 h and was observed until 24 h. From the values determined for the pharmacokinetic parameters, the range of the effective plasma DHA level for normal growth of the red sea bream was suggested to be between 21.0 and 40.3 ,g/mL. For [13C]DPA, the AUC0-24 and Cmax values also linearly increased with the dosage, but tmax did not depend on it. [source]


Effect of Docosahexaenoic Acid on Quality of Cryopreserved Boar Semen in Different Breeds

REPRODUCTION IN DOMESTIC ANIMALS, Issue 3 2010
K Kaeoket
Contents During the cryopreservation process, the level of polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), in the sperm plasma membrane decreases significantly because of lipid peroxidation, which may contribute to sperm loss quality (i.e. fertility) of frozen,thawed semen. The aim of this study was to investigate the effect of supplementation of DHA (fish oil) in freezing extender II on frozen,thawed semen quality. Semen from 20 boars of proven motility and morphology, were used in this study. Boar semen was split into four groups, in which the lactose,egg yolk (LEY) extender used to resuspend the centrifuged sperm pellet was supplemented with various levels of fish oil to reach DHA level of 1X (group I, control, no added fish oil), 6X (group II), 12X (group III) and 18X (group IV). Semen solutions were frozen by using a controlled rate freezer. After cryopreservation, frozen semen was thawed and evaluated for progressive motility, viability by using SYBR-14/Ethidiumhomodimer-1 (EthD-1) staining and acrosome integrity by using FITC-PNA/EthD-1 staining. There was a significantly higher (p < 0.001) percentage of progressive motility, viability and acrosome integrity in DHA (fish oil) supplemented groups than control group. Generally, there seemed to be a dose-dependent effect of DHA, with the highest percentage of progressive motility, viability and acrosome integrity in group-III. In conclusion, supplementation of the LEY extender with DHA by adding fish oil was effective for freezing boar semen as it resulted in higher post-thaw plasma membrane integrity and progressive motility. [source]


Docosahexaenoic acid (22:6n-3) enrichment of membrane phospholipids increases gap junction coupling capacity in cultured astrocytes

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2006
Gaelle Champeil-Potokar
Abstract Although it is agreed that n-3 polyunsaturated fatty acids (PUFAs) are important for brain function, it has yet to be demonstrated how they are involved in precise cellular mechanisms. We investigated the role of enhanced n-3 PUFA in astrocyte membranes on the gap junction capacity of these cells. Astrocytes isolated from newborn rat cortices were grown in medium supplemented with docosahexaenoic acid (DHA), the main n-3 PUFA in cell membranes, or arachidonic acid (AA), the main n-6 PUFA, plus an antioxidant (,-tocopherol or N -acetyl-cystein) to prevent peroxidation. The resulting three populations of astrocytes differed markedly in their n-3 : n-6 PUFA ratios in phosphatidylethanolamine and phosphatidylcholine, the main phospholipids in membranes. DHA-supplemented cells had a physiological high n-3 : n-6 ratio (1.58), unsupplemented cells had a low n-3 : n-6 ratio (0.66) and AA-supplemented cells had a very low n-3 : n-6 ratio (0.36), with excess n-6 PUFA. DHA-supplemented astrocytes had a greater gap junction capacity than unsupplemented cells or AA-supplemented cells. The enhanced gap junction coupling of DHA-enriched cells was associated with a more functional distribution of connexin 43 at cell interfaces (shown by immunocytochemistry) and more of the main phosphorylated isoform of connexin 43. These findings suggest that the high n-3 : n-6 PUFA ratio that occurs naturally in astrocyte membranes is needed for optimal gap junction coupling in these cells. [source]


Docosahexaenoic acid stabilizes soluble amyloid-, protofibrils and sustains amyloid-,-induced neurotoxicity in vitro

FEBS JOURNAL, Issue 4 2007
Ann-Sofi Johansson
Enrichment of diet and culture media with the polyunsaturated fatty acid docosahexaenoic acid has been found to reduce the amyloid burden in mice and lower amyloid-, (A,) levels in both mice and cultured cells. However, the direct interaction of polyunsaturated fatty acids, such as docosahexaenoic acid, with A,, and their effect on A, aggregation has not been explored in detail. Therefore, we have investigated the effect of docosahexaenoic acid, arachidonic acid and the saturated fatty acid arachidic acid on monomer oligomerization into protofibrils and protofibril fibrillization into fibrils in vitro, using size exclusion chromatography. The polyunsaturated fatty acids docosahexaenoic acid and arachidonic acid at micellar concentrations stabilized soluble A,42 wild-type protofibrils, thereby hindering their conversion to insoluble fibrils. As a consequence, docosahexaenoic acid sustained amyloid-,-induced toxicity in PC12 cells over time, whereas A, without docosahexaenoic acid stabilization resulted in reduced toxicity, as A, formed fibrils. Arachidic acid had no effect on A, aggregation, and neither of the fatty acids had any protofibril-stabilizing effect on A,42 harboring the Arctic mutation (A,E22G). Consequently, A,Arctic-induced toxicity could not be sustained using docosahexaenoic acid. These results provide new insights into the toxicity of different A, aggregates and how endogenous lipids can affect A, aggregation. [source]


Modulation of inflammation in brain: a matter of fat

JOURNAL OF NEUROCHEMISTRY, Issue 3 2007
Akhlaq A. Farooqui
Abstract Neuroinflammation is a host defense mechanism associated with neutralization of an insult and restoration of normal structure and function of brain. Neuroinflammation is a hallmark of all major CNS diseases. The main mediators of neuroinflammation are microglial cells. These cells are activated during a CNS injury. Microglial cells initiate a rapid response that involves cell migration, proliferation, release of cytokines/chemokines and trophic and/or toxic effects. Cytokines/chemokines stimulate phospholipases A2 and cyclooxygenases. This results in breakdown of membrane glycerophospholipids with the release of arachidonic acid (AA) and docosahexaenoic acid (DHA). Oxidation of AA produces pro-inflammatory prostaglandins, leukotrienes, and thromboxanes. One of the lyso-glycerophospholipids, the other products of reactions catalyzed by phospholipase A2, is used for the synthesis of pro-inflammatory platelet-activating factor. These pro-inflammatory mediators intensify neuroinflammation. Lipoxin, an oxidized product of AA through 5-lipoxygenase, is involved in the resolution of inflammation and is anti-inflammatory. Docosahexaenoic acid is metabolized to resolvins and neuroprotectins. These lipid mediators inhibit the generation of prostaglandins, leukotrienes, and thromboxanes. Levels of prostaglandins, leukotrienes, and thromboxanes are markedly increased in acute neural trauma and neurodegenerative diseases. Docosahexaenoic acid and its lipid mediators prevent neuroinflammation by inhibiting transcription factor NF,B, preventing cytokine secretion, blocking the synthesis of prostaglandins, leukotrienes, and thromboxanes, and modulating leukocyte trafficking. Depending on its timing and magnitude in brain tissue, inflammation serves multiple purposes. It is involved in the protection of uninjured neurons and removal of degenerating neuronal debris and also in assisting repair and recovery processes. The dietary ratio of AA to DHA may affect neurodegeneration associated with acute neural trauma and neurodegenerative diseases. The dietary intake of docosahexaenoic acid offers the possibility of counter-balancing the harmful effects of high levels of AA-derived pro-inflammatory lipid mediators. [source]


Docosahexaenoic acid, the aquatic diet, and hominin encephalization: Difficulties in establishing evolutionary links

AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 1 2007
Bryce A. Carlson
Distinctive characteristics of modern humans, including language, tool manufacture and use, culture, and behavioral plasticity, are linked to changes in the organization and size of the brain during hominin evolution. As brain tissue is metabolically and nutritionally costly to develop and maintain, early hominin encephalization has been linked to a release of energetic and nutritional constraints. One such nutrient-based approach has focused on the n -3 long-chained polyunsaturated fatty acid docosahexaenoic acid (DHA), which is a primary constituent of membrane phospholipids within the synaptic networks of the brain essential for optimal cognitive functioning. As biosynthesis of DHA from n -3 dietary precursors (alpha-linolenic acid, LNA) is relatively inefficient, it has been suggested that preformed DHA must have been an integral dietary constituent during evolution of the genus Homo to facilitate the growth and development of an encephalizing brain. Furthermore, preformed DHA has only been identified to an appreciable extent within aquatic resources (marine and freshwater), leading to speculation that hominin encephalization is linked specifically to access and consumption of aquatic resources. The key premise of this perspective is that biosynthesis of DHA from LNA is not only inefficient but also insufficient for the growth and maturation demands of an encephalized brain. However, this assumption is not well-supported, and much evidence instead suggests that consumption of LNA, available in a wider variety of sources within a number of terrestrial ecosystems, is sufficient for normal brain development and maintenance in modern humans and presumably our ancestors. Am. J. Hum. Biol. 19:132,141, 2007. © 2006 Wiley-Liss, Inc. [source]


Sesamin and ,-tocopherol synergistically suppress lipid-peroxide in rats fed a high docosahexaenoic acid diet

BIOFACTORS, Issue 1-2 2000
K. Yamashita
Abstract Docosahexaenoic acid (DHA) is an essential nutrient for human health, but has extremely high oxidative susceptibility. We examined the suppressing effect of sesamin, a sesame seed lignan, on lipidperoxides in rats fed a low ,-tocopherol and high DHA containing diet. Groups of rats were fed four experimental diets: low ,-tocopherol (10 mg/kg diet) control diet, low ,-tocopherol + 0.2% sesamin diet, low ,-tocopherol + 0.5% DHA diet and low ,-tocopherol + 0.5% DHA + 0.2% sesamin diet. TBARS concentrations in plasma and liver were significantly increased by DHA, but were completely suppressed by sesamin. ,-Tocopherol concentrations in plasma and liver decreased by addition of DHA, but with sesamin recovered to the control level. The addition of DHA into the diets caused remarkable increases of DHA concentrations in plasma and liver lipids. Sesamin caused a significant increase of DHA concentrations in the triacylglycerol of plasma. [source]


Docosahexaenoic acid and other fatty acids induce a decrease in pHi in Jurkat T-cells

BRITISH JOURNAL OF PHARMACOLOGY, Issue 7 2003
Virginie Aires
Docosahexaenoic acid (DHA) induced rapid (t1/2=33 s) and dose-dependent decreases in pHi in BCECF-loaded human (Jurkat) T-cells. Addition of 5-(N,N -dimethyl)-amiloride, an inhibitor of Na+/H+ exchanger, prolonged DHA-induced acidification as a function of time, indicating that the exchanger is implicated in pHi recovery. Other fatty acids like oleic acid, arachidonic acid, eicosapentaenoic acid, but not palmitic acid, also induced a fall in pHi in these cells. To assess the role of calcium in the DHA-induced acidification, we conducted experiments in Ca2+ -free (0% Ca2+) and Ca2+ -containing (100% Ca2+) buffer. We observed that there was no difference in the degree of DHA-induced transient acidification in both the experimental conditions, though pHi recovery was faster in 0% Ca2+ medium than that in 100% Ca2+ medium. In the presence of BAPTA, a calcium chelator, a rapid recovery of DHA-induced acidosis was observed. Furthermore, addition of CaCl2 into 0% Ca2+ medium curtailed DHA-evoked rapid pHi recovery. In 0% Ca2+ medium, containing BAPTA, DHA did not evoke increases in [Ca2+]i, though this fatty acid still induced a rapid acidification in these cells. These observations suggest that calcium is implicated in the long-lasting DHA-induced acidosis. DHA-induced rapid acidification may be due to its deprotonation in the plasma membrane (flip-flop model), as suggested by the following observations: (1) DHA with a ,COOH group induced intracellular acidification, but this fatty acid with a ,COOCH3 group failed to do so, and (2) DHA, but not propionic acid, -induced acidification was completely reversed by addition of fatty acid-free bovine serum albumin in these cells. These results suggest that DHA induces acidosis via deprotonation and Ca2+ mobilization in human T-cells. British Journal of Pharmacology (2003) 140, 1217,1226. doi:10.1038/sj.bjp.0705563 [source]


Long chain polyunsaturated fatty acids (LC-PUFA) and perinatal development

ACTA PAEDIATRICA, Issue 4 2001
B Koletzko
This paper reports on the conclusions of a workshop on the role of long chain polyunsaturated fatty acids (LC-PUFA) in maternal and child health The attending investigators involved in the majority of randomized trials examining LC-PUFA status and functional outcomes summarize the current knowledge in the field and make recommendations for dietary practice. Only studies published in full or in abstract form were used as our working knowledge base. Conclusions: For healthy infants we recommend and strongly support breastfeeding as the preferred method of feeding, which supplies preformed LC-PUFA. Infant formulas for term infants should contain at least 0.2% of total fatty acids as docosahexaenoic acid (DHA) and 0.35% as arachidonic acid (AA). Since preterm infants are born with much less total body DHA and AA, we suggest that preterm infant formulas should include at least 0.35% DHA and 0.4% AA. Higher levels might confer additional benefits and should be further investigated because optimal dietary intakes for term and preterm infants remain to be defined. For pregnant and lactating women we consider it premature to recommend specific LC-PUFA intakes. However, it seems prudent for pregnant and lactating women to include some food sources of DHA in their diet in view of their assumed increase in LC-PUFA demand and the relationship between maternal and foetal DHA status. [source]


Supercritical fluid extraction of lipids from the heterotrophic microalga Crypthecodinium cohnii

ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 2 2010
Ricardo Miguel Couto
Abstract Microalgae biomass can be a feasible source of ,-3 fatty acids due to its stable and reliable composition. In the present study, the Crypthecodinium cohnii growth and docosahexaenoic acid (DHA, 22:6,3) production in a 100,L glucose-fed batch fermentation was evaluated. The lipid compounds were extracted by supercritical carbon dioxide (SC-CO2) from C. cohnii CCMP 316 biomas, was and their fatty acid composition was analysed. Supercritical fluid extraction runs were performed at temperatures of 313 and 323,K and pressures of 20.0, 25.0 and 30.0,MPa. The optimum extraction conditions were found to be 30.0,MPa and 323,K. Under those conditions, almost 50% of the total oil contained in the raw material was extracted after 3,h and the DHA composition attained 72%,w/w of total fatty acids. The high DHA percentage of total fatty acids obtained by SC-CO2 suggested that this extraction method may be suitable for the production of C. cohnii value added products directed towards pharmaceutical purposes. Furthermore, the fatty acid composition of the remaining lipid fraction from the residual biomass with lower content in polyunsaturated fatty acids could be adequate for further uses as feedstock for biodiesel, contributing to the economy of the overall process suggesting an integrated biorefinery approach. [source]


A diet enriched with mackerel (Scomber scombrus),derived products improves the endothelial function in a senior population (Prevención de las Enfermedades Cardiovasculares: Estudio Santoña , PECES project)

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 3 2009
J. R. De Berrazueta
ABSTRACT Background, Regular consumption of fish reduces cardiovascular risks. Here, we investigate if the consumption of products with mackerel (Scomber scombrus) with 8·82 g of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) content per 100 g of product improves parameters of endothelial function in a controlled population. Materials and methods, Subjects maintained a 12-week diet with products with mackerel. The population consisted of 58 senior subjects (12 withdrawals, 25 women), aged 82·08 ± 8·13 years (Group A). Twenty-three senior subjects (13 women) on a regular diet were used as the control group (Group B). Subjects of Group A received 57 portions throughout 12 weeks (four to five portions a week of products with a mean EPA + DHA content of 2·5 g a day). A continuous follow-up and a final evaluation were performed to determine the level of consumption. Plasma samples were stored at ,70 °C for a biochemical study. Endothelial function was analysed by reactive hyperemia with a mercury strain gauge plethysmography with measurement of blood flow in the forearm, both baseline and at the end of the 12-week diet. Results, Endothelium-dependent vasodilatation significantly increased in Group A subjects (P < 0·001). No changes were found in Group B. The subgroup analyses showed that improvements were produced in Group A subjects without cardiovascular disease (P < 0·001). Nitrites/nitrates and von Willebrand factor plasma concentrations were higher in participants after the 12-week diet. Conclusions, The consumption of mackerel meat products improves endothelium-dependent, flow-mediated vasodilatation in a senior population. This finding might explain some of the cardioprotective effects of fish consumption. [source]


Fatty acid composition of selected roes from some marine species

EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 9 2009
Miguel Ángel Rincón-Cervera
Abstract Fifteen roes from different marine fish species available in Spain were analyzed in order to determine their fatty acid (FA) composition, especially the eicosapentaenoic acid (20:5n -3, EPA) and docosahexaenoic acid (22:6n -3, DHA) contents. Roes from Atlantic bonito (Sarda sarda), European squid (Loligo vulgaris), cuttlefish (Sepia spp.), lumpfish (Cyclopterus lumpus), European hake (Merluccius merluccius), Atlantic salmon (Salmo salar) and gonads of male Atlantic mackerel (Scomber scombrus) reached EPA + DHA amounts higher than 30% of the total FA, and among them, roes from lumpfish, European hake and salmon provide different FA type ratios that could make them adequate as dietary sources of EPA and DHA. [source]


Retention behavior of trans isomers of eicosapentaenoic and docosahexaenoic acid methyl esters on a polyethylene glycol stationary phase

EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 6 2008
Svein A. Mjøs
Abstract A polyethylene glycol (PEG) stationary phase was evaluated for the separation of mono- trans isomers of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) methyl esters. The resolution patterns were compared to patterns achieved with previously applied conditions on a cyanopropyl phase. There were no overlaps between all- cis EPA/DHA and their mono- trans isomers on the PEG phase. Because of overlap between 22:0 and 22:1 isomers, the PEG column is not a good choice for analyses of EPA trans isomers in crude fish oils. However, if the saturated and monounsaturated fatty acids are not present in significant amounts, PEG can be a better choice than cyanopropyl columns. [source]


Geometrical isomerisation of eicosapentaenoic and docosahexaenoic acid at high temperatures

EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 7 2006
Svein A. Mjøs
Abstract Concentrates of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were heated at 140,240,°C for 2,8,h under nitrogen. The trans isomers were analysed by gas chromatography-mass spectrometry on a BPX-70 cyanopropyl column. All geometrical isomers of EPA and DHA with one trans double bond were observed. The rate constants (k) for the isomerisation of the all- cis isomers were calculated and found to be higher than previously reported for linoleic acid and ,-linolenic acid. Arrhenius plots showed a linear relationship between ln,k and the reciprocal absolute temperature above 180,°C. The distribution patterns of isomers with one trans double bond are approximately constant up to a degree of isomerisation of 25%. The degree of isomerisation can therefore be estimated from selected trans peaks. [source]


Docosahexaenoic acid (22:6n-3) enrichment of membrane phospholipids increases gap junction coupling capacity in cultured astrocytes

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2006
Gaelle Champeil-Potokar
Abstract Although it is agreed that n-3 polyunsaturated fatty acids (PUFAs) are important for brain function, it has yet to be demonstrated how they are involved in precise cellular mechanisms. We investigated the role of enhanced n-3 PUFA in astrocyte membranes on the gap junction capacity of these cells. Astrocytes isolated from newborn rat cortices were grown in medium supplemented with docosahexaenoic acid (DHA), the main n-3 PUFA in cell membranes, or arachidonic acid (AA), the main n-6 PUFA, plus an antioxidant (,-tocopherol or N -acetyl-cystein) to prevent peroxidation. The resulting three populations of astrocytes differed markedly in their n-3 : n-6 PUFA ratios in phosphatidylethanolamine and phosphatidylcholine, the main phospholipids in membranes. DHA-supplemented cells had a physiological high n-3 : n-6 ratio (1.58), unsupplemented cells had a low n-3 : n-6 ratio (0.66) and AA-supplemented cells had a very low n-3 : n-6 ratio (0.36), with excess n-6 PUFA. DHA-supplemented astrocytes had a greater gap junction capacity than unsupplemented cells or AA-supplemented cells. The enhanced gap junction coupling of DHA-enriched cells was associated with a more functional distribution of connexin 43 at cell interfaces (shown by immunocytochemistry) and more of the main phosphorylated isoform of connexin 43. These findings suggest that the high n-3 : n-6 PUFA ratio that occurs naturally in astrocyte membranes is needed for optimal gap junction coupling in these cells. [source]


Docosahexaenoic acid stabilizes soluble amyloid-, protofibrils and sustains amyloid-,-induced neurotoxicity in vitro

FEBS JOURNAL, Issue 4 2007
Ann-Sofi Johansson
Enrichment of diet and culture media with the polyunsaturated fatty acid docosahexaenoic acid has been found to reduce the amyloid burden in mice and lower amyloid-, (A,) levels in both mice and cultured cells. However, the direct interaction of polyunsaturated fatty acids, such as docosahexaenoic acid, with A,, and their effect on A, aggregation has not been explored in detail. Therefore, we have investigated the effect of docosahexaenoic acid, arachidonic acid and the saturated fatty acid arachidic acid on monomer oligomerization into protofibrils and protofibril fibrillization into fibrils in vitro, using size exclusion chromatography. The polyunsaturated fatty acids docosahexaenoic acid and arachidonic acid at micellar concentrations stabilized soluble A,42 wild-type protofibrils, thereby hindering their conversion to insoluble fibrils. As a consequence, docosahexaenoic acid sustained amyloid-,-induced toxicity in PC12 cells over time, whereas A, without docosahexaenoic acid stabilization resulted in reduced toxicity, as A, formed fibrils. Arachidic acid had no effect on A, aggregation, and neither of the fatty acids had any protofibril-stabilizing effect on A,42 harboring the Arctic mutation (A,E22G). Consequently, A,Arctic-induced toxicity could not be sustained using docosahexaenoic acid. These results provide new insights into the toxicity of different A, aggregates and how endogenous lipids can affect A, aggregation. [source]


Cellular localization of epidermal-type and brain-type fatty acid-binding proteins in adult hippocampus and their response to cerebral ischemia

HIPPOCAMPUS, Issue 7 2010
Dexuan Ma
Abstract This study aimed at an analysis of expression of epidermal-type and brain-type fatty acid-binding proteins (E-FABP and B-FABP, also called FABP5 and FABP7, respectively) in adult hippocampus and their potential value as neuroprotective factors after ischemic brain damage in monkey model. The immunostaining and Western blotting results show that FABP5 was mainly expressed in neurons, whereas FABP7 was primarily expressed in astrocytes and progenitors of the subgranular zone (SGZ). Interestingly, FABP5 expression in neurons increased in cornu Ammonis 1 (CA1) and remains stable within dentate gyrus (DG) after ischemia; FABP7 expression increased within both CA1 and SGZ. This indicates a potential role for FABP5 and FABP7 in intracellular fatty acid transport within different neural cells. The change in FABP5,7 expression within CA1 and DG of the adult postischemic hippocampus was compatible with previous findings of downregulation in CA1 neurons and upregulation in SGZ progenitor cells after ischemia. Altogether, the present data suggest that polyunsaturated fatty acids, such as docosahexaenoic acid, may act via FABP5 or 7 to regulate adult postischemic hippocampal neuronal antiapoptosis or neurogenesis in primates. © 2009 Wiley-Liss, Inc. [source]


Familial adenomatous polyposis patients have high levels of arachidonic acid and docosahexaenoic acid and low levels of linoleic acid and ,-linolenic acid in serum phospholipids

INTERNATIONAL JOURNAL OF CANCER, Issue 3 2007
Kari Almendingen
Abstract Familial adenomatous polyposis (FAP) provides a model of APC inactivation as an early genetic event for the ,85% of colorectal cancers that develop from polyps. Abnormal fatty acid composition of tissues and serum phospholipids has been linked to cancer risk. Our aim was to describe the composition of fatty acids in serum phospholipids in 38 colectomized FAP patients as compared to 160 healthy subjects. Mean fatty acid intakes were similar between the groups. Colectomy was done on average 16 years prior to inclusion, and 18% were diagnosed with colorectal cancer at colectomy. The levels (weight %) of linoleic and ,-linolenic acid were higher among the reference subjects (difference: 3.96, 95% confidence interval (CI) = 2.87, 5.04, and difference: 0.06, 95% CI = 0.04, 0.08, respectively), and the levels of arachidonic and docosahexaenoic acid were lower (difference: ,3.70, 95% CI = ,4.35, ,3.06, and difference: ,5.26, 95% CI = ,6.25, ,4.28, respectively) as compared to the FAP patients (all p , 0.0001). The abnormal fatty acid composition was not related to time since colectomy, intestinal reconstruction or history of colorectal cancer for any of the fatty acids assessed. Compositional differences in the fatty acid profile of serum phospholipids have not been described before in FAP patients. Further studies are needed to confirm these findings and assess clinical significances of a possible distorted fatty acid metabolism, including a potentially different dietary need of essential fatty acids. The relevance of these findings for APC induced cancers remains unclear. © 2006 Wiley-Liss, Inc. [source]


Dietary carotenoids and risk of colon cancer: Case-control study

INTERNATIONAL JOURNAL OF CANCER, Issue 1 2004
André Nkondjock
Abstract Some epidemiological studies suggest that consumption of fruits and vegetables with a high carotenoid content may protect against colon cancer (CC). The evidence, however, is not completely consistent. Given the inconsistencies in findings in previous studies and continued interest in identifying modifiable risk factors for CC, a case-control study of French-Canadian in Montreal, Canada, was undertaken to examine the possible association between dietary carotenoids and CC risk and to investigate whether this association varies in relation to lifestyle factors such as smoking or diet, and particularly the high consumption of long-chain polyunsaturated fatty acids (LCPUFA). A total of 402 colorectal cases (200 males and 202 females) and 688 population-based controls matched for age, gender and place of residence were interviewed. Dietary intake was assessed through a validated food frequency questionnaire that collected information on over 200 food items and recipes. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated in unconditional logistic regression models. After adjustment for important variables such as total energy intake, no association was found between dietary intake of carotenoids and CC risk. For women with high intakes of LCPUFA, an inverse association was found between lutein + zeaxanthin and CC risk. ORs were 0.41; 95%CI (0.19,0.91), p=0.03 for eicosapentaenoic acid, and OR=0.36, 95%CI (0.19,0.78), p=0.01 for docosahexaenoic acid, when the upper quartiles of intake were compared to the lower. Among never-smokers, a significantly reduced risk of CC was associated with intake of ,-carotene [OR=0.44, 95%CI (0.21,0.92) and p=0.02], whereas an inverse association was found between lycopene intake and CC risk [OR=0.63, 95%CI (0.40,0.98) and p=0.05] among smokers. The results of our study suggest that a diet rich in both lutein + zeaxanthin and LCPUFAs may help prevent CC in French-Canadian females. © 2004 Wiley-Liss, Inc. [source]


Effects of differences in diet and seasonal changes on the fatty acid composition in fillets from farmed and wild sea bream (Sparus aurata L.) and sea bass (Dicentrarchus labrax L.)

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 5 2008
Mustafa Yildiz
Summary The effects of dietary fatty acids and seasonal variation on the fatty acid profiles of farmed and wild sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) were determined by analysis of their fillets. Farmed sea bream and sea bass were fed on the same commercial feeds all year. Fatty acid profiles in the fillets reflected the fatty acid profiles of the commercial feeds. The predominant fatty acids in the trial feeds, fillets of farmed and wild sea bream and sea bass were 16:0, 18:1n -9, 18:2n -6, 20:5n -3 and 22:6n -3. The fatty acid profiles in the fillets of farmed sea bream and sea bass did not differ (P > 0.05) except in the winter season compared with those of their wild counterparts. However, the content of eicosapentaenoic acid (20:5n -3), docosahexaenoic acid (22:6n -3) in the fillets of the farmed and wild sea bass were significantly (P < 0.05) higher than the farmed and wild sea bream. The wild sea bream had significantly (P < 0.05) higher total saturated fatty acid and monounsaturated fatty acid (MUFA) levels, and lower total n -6 and n -3 polyunsaturated fatty acid (PUFA) levels in winter than in the summer and spring seasons. Similarly, in the fillets of wild sea bass, total n -3 PUFA levels were significantly (P < 0.05) lower, and the MUFA levels were higher in winter than in the other seasons. These results indicate that the farmed fish fillets were good sources of n -3 PUFA in each of the three seasons. However, wild fish were good sources of n -3 PUFA in the spring and summer. [source]


Effect of Fish Oil Supplementation on Quality of Life in a General Population of Older Dutch Subjects: A Randomized, Double-Blind, Placebo-Controlled Trial

JOURNAL OF AMERICAN GERIATRICS SOCIETY, Issue 8 2009
Ondine Van De Rest MSc
OBJECTIVES: To investigate the effect of eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) supplementation on quality of life (QOL). DESIGN: Randomized, double-blind, placebo-controlled trial. SETTING: Independently living individuals from the general older Dutch population. PARTICIPANTS: Three hundred two individuals aged 65 and older without depression or dementia. INTERVENTION: 1,800 mg/d EPA-DHA (n=96), 400 mg/d EPA-DHA (n=100), or placebo capsules (n=106) for 26 weeks. MEASUREMENTS: QOL was assessed using the short version of the World Health Organization QOL questionnaire (WHOQOL-BREF). The WHOQOL-BREF covers four domains: physical health, psychological health, social relationships, and satisfaction with environment. The total score range is 26 to 130, with higher scores indicating a more favorable condition. RESULTS: Mean age of the participants was 70, and 55% were male. Plasma concentrations of EPA-DHA increased 238% in the high-dose and 51% in the low-dose EPA-DHA group, reflecting excellent adherence. Median baseline total WHOQOL scores ranged from 107 to 110 in the three groups and were not significantly different from each other. After 26 weeks, the mean difference from placebo was ,1.42 (95% confidence interval (CI)=,3.40,0.57) for the high-dose and 0.02 (95% CI=,1.95,1.99) for the low-dose fish oil group. Treatment with 1,800 mg or 400 mg EPA-DHA did not affect total QOL or any of the separate domains after 13 or 26 weeks of intervention. CONCLUSION: Supplementation with high or low doses of fish oil for 26 weeks did not influence the QOL of healthy older individuals. [source]


Essential fatty acids supplementation in different-stage atopic dogs fed on a controlled diet

JOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 3-6 2005
C. Abba
Summary The aim of this trial was to evaluate the effects of polyunsaturated fatty acid (PUFA) supplementation in different-stages atopic dogs fed on a controlled diet. Twenty-two non-seasonal atopic dogs of different breeds and ages were included in the 2-month trial. All the patients were given an essential fatty acid (EFA) supplementation [17 mg/kg eicosapentaenoic acid (EPA) + 5 mg/kg docosahexaenoic acid (DHA) + 35 mg/kg gammalinolenic acid (GLA)], the global (diet + supplementation) , -6 to , -3 ratio was 5.5,1. Two groups of dogs were considered: group A ,pre-immunotherapy' (15 cases) included dogs with early stages atopy, which had not been submitted to any treatment yet; group B ,post-immunotherapy' (seven cases) included dogs with chronic atopy immunotherapy non-responsive. Clinical evaluations were performed at the beginning, on day 30 and at the end of the trial. Blood serum fatty acids profile was determined at the beginning and at the end of the study. Better clinical results were obtained in group A, a great difference was found between the two groups on pruritus score. Serum arachidonic acid (AA) was significantly lower at the end of the trial in group A while GLA was significantly higher in group B. We hypothesized that different-stages atopic dogs could have different response to EFA supplementation, maybe because of a different fatty acids metabolism. Early stages cases seem to be more responsive to EFA supplementation. [source]


Long chain-polyunsaturated fatty acids modulate membrane phospholipid composition and protein localization in lipid rafts of neural stem cell cultures

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2010
Bénédicte Langelier
Abstract Rat neural stem cells/neural progenitors (NSC/NP) are generally grown in serum-free medium. In this study, NSC/NP were supplemented with the main long-chain polyunsaturated fatty acids (PUFAs) present in the brain, arachidonic acid (AA), or docosahexaenoic acid (DHA), and were monitored for their growth. Lipid and fatty acid contents of the cells were also determined. Under standard conditions, the cells were characterized by phospholipids displaying a highly saturated profile, and very low levels of PUFAs. When cultured in the presence of PUFAs, the cells easily incorporated them into the phospholipid fraction. We also compared the presence of three membrane proteins in the lipid raft fractions: GFR and connexin 43 contents in the rafts were increased by DHA supplementation, whereas G, subunit content was not significantly modified. The restoration of DHA levels in the phospholipids could profoundly affect protein localization and, consequently, their functionalities. J. Cell. Biochem. 110: 1356,1364, 2010. © 2010 Wiley-Liss, Inc. [source]


N,3 polyunsaturated fatty acids impair lifespan but have no role for metabolism

AGING CELL, Issue 1 2007
Teresa G. Valencak
Summary Although generally considered as beneficial components of dietary fats, polyunsaturated fatty acids (PUFA) have been suspected to compromise maximum lifespan (MLSP) in mammals. Specifically, high amounts of phospholipid PUFAs are thought to impair lifespan due to an increase in the susceptibility of membranes to lipid peroxidation and its damaging effect on cellular molecules. Also, there is evidence from in vitro studies suggesting that highly unsaturated PUFAs elevate basal metabolic rate (BMR). Previous comparative studies in this context were based on small sample sizes, however, and, except for one study, failed to address possible confounding influences of body weight and taxonomic relations between species. Therefore, we determined phospholipid membrane composition in skeletal muscle from 42 mammalian species to test for a relation with published data on MLSP, and with literature data on BMR (30 species). Using statistical models that adjust for the effects of body weight and phylogeny, we found that among mammals, MLSP indeed decreases as the ratio of n,3 to n,6 PUFAs increases. In contrast to previous studies, we found, however, no relation between MLSP and either membrane unsaturation (i.e. PUFA content or number of double bonds) or to the very long-chain, highly unsaturated docosahexaenoic acid (DHA). Similarly, our data set gave no evidence for any notable relation between muscle phospholipid fatty acid composition and BMR, or MLSP and BMR in mammals. These results contradict the ,membrane pacemaker theory of aging', that is, the concept of a direct link between high amounts of membrane PUFAs, elevated BMR, and thus, impaired longevity. [source]


LIPID, CHOLESTEROL AND FATTY ACID PROFILE OF SOME COMMERCIALLY IMPORTANT FISH SPECIES FROM SOUTH CASPIAN SEA

JOURNAL OF FOOD BIOCHEMISTRY, Issue 4 2010
S. PIRESTANI
ABSTRACT The fatty acid, lipid, cholesterol and energy contents in five commercially important fish species from South Caspian Sea (common kilka, Caspian kutum, golden gray mullet, common carp and pike perch) were evaluated. The fatty acid compositions of these five fish species ranged from 28.99 to 41.05% saturated fatty acids, 40.99,56.25% monounsaturated fatty acids and 14.22,23.03% polyunsaturated fatty acids. Among these, those occurring in the highest proportions were palmitic acid (20.42,27.9%), palmitoleic acid (11.09,26.26%), oleic acid (16.1,36.94%), eicosapentaenoic acid (3.22,7.53%) and docosahexaenoic acid (3.86,11.36%). The lipid, cholesterol and energy contents ranged from 1.97% to 10.23%, 57,302 mg/100 g and 4365.4,5544.2 cal g/dm, respectively. The obtained Statistical results showed that in these fishes, many of the above mentioned indices had significant differences (P , 0.01) and the cluster analysis results of fatty acid compositions showed that common carp and pike perch had good similarity, followed by the Caspian kutum and golden gray mullet. However, common kilka did not show any similarity to others. PRACTICAL APPLICATIONS Fish consumption has been linked to health benefits such as reduced risk of coronary heart disease. This is largely attributed to the lipid, cholesterol, energy contents, fatty acid compositions and the polyunsaturated fatty acids present in fish oils. The ,-3 : ,-6, polyunsaturated fatty acid/saturated fatty acid and eicosapentaenoic acid + docosahexaenoic acid/C16 ratios are considered to be useful criteria for comparing relative nutritional and oxidation values of fish oils. [source]


DIFFERENTIATION OF CURED COOKED HAMS BY PHYSICO-CHEMICAL PROPERTIES AND CHEMOMETRICS

JOURNAL OF FOOD QUALITY, Issue 1 2009
VITTORIO M. MORETTI
ABSTRACT Comparison of physico-chemical and compositional traits was carried out on cooked hams. Deboned fresh pig thighs of three different origins were divided into three batches: 200 pig thighs from the Italian market, H1; 200 from The Netherlands, H2; and 200 from Denmark, H3. Boneless pig thighs were processed under commercial guidelines for production of cooked hams, using brine at 25% level of injection. After processing, 12 cooked hams from each batch were sampled randomly and analyzed for proximate and fatty acid composition. Color measurement was performed on the muscles: biceps femoris, semimembranosus, and semitendinosus. H1 hams showed a higher weight loss and a lower technological yield compared to H2 and H3 hams. Analysis of variance on compositional data showed that H1 hams had a lower moisture/protein ratio, a higher fat content, a lower percentage of, -linolenic, eicosapentaenoic and docosahexaenoic acid, and a higher percentage of myristic and palmitic acids when compared to H2 and H3 hams (P < 0.05). Analysis of color of the three muscles demonstrated that hams from the H1 group had the highest a* values. The application of linear discriminant analysis demonstrated that the use of only four variables allowed to correctly discriminate among groups of cooked hams. PRACTICAL APPLICATIONS The following are the practical applications of this research. The comparison of physico-chemical and compositional traits were carried out on cooked hams. Pig thighs of different origin were processed under commercial guidelines. The physicochemical parameters of cooked hams were defined and showed some differences characterizing the products. [source]


Microencapsulation of Fish Oil by Spray Granulation and Fluid Bed Film Coating

JOURNAL OF FOOD SCIENCE, Issue 6 2010
Sri Haryani Anwar
Abstract:, The stability of microencapsulated fish oil prepared with 2 production processes, spray granulation (SG) and SG followed by film coating (SG-FC) using a fluid bed equipment, was investigated. In the 1st process, 3 types of fish oil used were based on the ratios of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (10/50, 33/22, and 18/12). Each type was emulsified with soluble soybean polysaccharide (SSPS) and maltodextrin to produce 25% oil powders. In the 2nd process, 15% film coating of hydroxypropyl betacyclodextrin (HPBCD) was applied to the granules from the 1st process. The powder stability against oxidation was examined by measurement of peroxide values (PV) and headspace propanal after storage at room temperature and at 3 to 4 °C for 6 wk. Uncoated powder containing the lowest concentration of PUFA (18/12) was found to be stable during storage at room temperature with maximum PV of 3.98 ± 0.001 meq/kg oil. The PV increased sharply for uncoated powder with higher concentration of omega-3 (in 33/22 and 10/50 fish oils) after 3 wk storage. The PVs were in agreement with the concentration of propanal, and these 2 parameters remained constant for most of the uncoated powders stored at low temperature. Unexpectedly, the outcomes showed that the coated powders had lower stability than uncoated powders as indicated by higher initial PVs; more hydroperoxides were detected as well as increasing propanal concentration. The investigation suggests that the film-coating by HPBCD ineffectively protected fish oil as the coating process might have induced further oxidation; however, SG is a good method for producing fish oil powder and to protect it from oxidation because of the "onion skin" structure of granules produced in this process. [source]


Composition and Oxidative Stability of a Structured Lipid from Amaranth Oil in a Milk-Based Infant Formula

JOURNAL OF FOOD SCIENCE, Issue 2 2010
Ashanty M. Pina-Rodriguez
ABSTRACT:, Amaranth oil can be enzymatically modified to match breast milk fat analog requirements. We have developed a structured lipid (SL) from amaranth oil that, in combination with milk fat, delivers recommended amounts of docosahexaenoic acid (DHA) with palmitic acid specifically esterified at the,sn- 2 position of the triacylglycerol (TAG) backbone. The aim of this study was to study the final fatty acid (FA) contribution and oxidation stability of an infant formula prepared using the structured lipid DCAO (DHA-containing customized amaranth oil). DCAO was included as complementary fat in a "prototype" infant formula, and prepared in parallel with a "control" infant formula under the same processing conditions. The same ingredients but different complementary fat sources were used. A blend of the most commonly used vegetable oils (palm olein, soybean, coconut, and high-oleic sunflower oils) for infant formula was used instead of DCAO in the "control" formula. Additionally, "prototype" and "control" infant formulas were compared to a "commercial" product in terms of FA composition. The oxidative stability index (OSI) of the extracted fats from "prototype,""control," and "commercial" infant formulas were evaluated and compared to the OSI of the substrate fat replacers used. DCAO was the least stable compared to other fat analogs. The use of commercial antioxidants in DCAO containing products should prevent oxidation and therefore increase their stability. [source]