Dopaminergic Terminals (dopaminergic + terminal)

Distribution by Scientific Domains


Selected Abstracts


Clinical and imaging characterization of a patient with idiopathic progressive ataxia and palatal tremor

EUROPEAN JOURNAL OF NEUROLOGY, Issue 8 2007
R. Cilia
We describe clinical and imaging features of a patient with sporadic progressive ataxia and palatal tremor (PAPT) of unknown etiology. There was hypertrophy of bilateral inferior olivary nuclei with hyperintense T2-weighted signal and mild cerebellar atrophy at brain magnetic resonance imaging. 18F-fluoro-2-desoxy- d -glucose positron emission tomography scanning (FDG-PET) showed hypometabolism in the red nucleus, external globus pallidus and precuneus while FP-CIT-SPECT imaging revealed mild and progressive loss of striatal dopaminergic terminals. Our findings suggest that in idiopathic PAPT involvement of the dentato-rubro-olivary pathway occurs along with some dopaminergic dysfunction. [source]


A modified MPTP treatment regime produces reproducible partial nigrostriatal lesions in common marmosets

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2005
Mahmoud M. Iravani
Abstract Standard MPTP treatment regimens in primates result in >,85% destruction of nigral dopaminergic neurons and the onset of marked motor deficits that respond to known symptomatic treatments for Parkinson's disease (PD). The extent of nigral degeneration reflects the late stages of PD rather than events occurring at its onset. We report on a modified MPTP treatment regimen that causes nigral dopaminergic degeneration in common marmosets equivalent to that occurring at the time of initiation of motor symptoms in man. Subcutaneous administration of MPTP 1 mg/kg for 3 consecutive days caused a reproducible 60% loss of nigral tyrosine hydroxylase (TH)-positive cells, which occurred mainly in the calbindin-D28k -poor nigrosomes with a similar loss of TH-immunoreactivity (TH-ir) in the caudate nucleus and the putamen. The animals showed obvious motor abnormalities with reduced bursts of activity and the onset of motor disability. However, the loss of striatal terminals did not reflect early PD because a greater loss of TH-ir occurred in the caudate nucleus than in the putamen and a marked reduction in TH-ir occurred in striatal patches compared to the matrix. Examination of striatal fibres following a partial MPTP lesion showed a conspicuous increase in the number and the diameter of large branching fibres in the putaminal and to some extent caudatal matrix, pointing to a possible compensatory sprouting of dopaminergic terminals. In addition, these partially lesioned animals did not respond to acute treatment with L-DOPA. This primate partial lesions model may be useful for examining potential neuroprotective or neurorestorative agents for PD. [source]


D2 Dopamine receptor blockade results in sprouting of DA axons in the intact animal but prevents sprouting following nigral lesions

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2003
W. Tripanichkul
Abstract Recently it was demonstrated that sprouting of dopaminergic neurons and a microglial and astrocyte response follows both partial lesions of the substantia nigra pars compacta and blockade of the D2 dopamine receptor. We therefore studied the effects of the combination of these two treatments (lesioning and D2 dopamine receptor blockade). Haloperidol administration caused a 57% increase in dopaminergic terminal tree size (measured as terminal density per substantia nigra pars compacta neuron) and an increase of glia in the striatum. Following small to medium nigral lesions (less than 60%), terminal tree size increased by 51% on average and returned density of dopaminergic terminals to normal. In contrast, administration of haloperidol for 16 weeks following lesioning resulted in reduced dopaminergic terminal density and terminal tree size (13%), consistent with absent or impaired sprouting. Glial cell numbers increased but were less than with lesions alone. When haloperidol was administered after the striatum had been reinnervated through sprouting (16,32 weeks after lesioning), terminal tree size increased up to 150%, similar to the effect of haloperidol in normal animals. By examining the effect of administering haloperidol at varying times following a lesion, we concluded that a switch in the effect of D2 dopamine receptor blockade occurred after dopaminergic synapses began to form in the striatum. We postulate that when synapses are present, D2 dopamine receptor blockade results in increased terminal density, whereas prior to synapse formation D2 dopamine receptor blockade causes attenuation of a sprouting response. We speculate that D2 dopamine receptors located on growth cones ,push' neurites toward their targets, and blockade of these receptors could lead to attenuation of sprouting. [source]


Injury induced c-Jun expression and phosphorylation in the dopaminergic nigral neurons of the rat: correlation with neuronal death and modulation by glial-cell-line-derived neurotrophic factor

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2001
Elisabetta Vaudano
Abstract This study was designed to determine whether induction and phosphorylation of the transcription factor c-Jun is associated with lesion-induced death of dopaminergic neurons of the substantia nigra pars compacta, and if this cellular response is modulated by glial-cell-line-derived neurotrophic factor. In adult rats, delayed dopaminergic neuron cell death induced by intrastriatal 6-hydroxydopamine injection led to a marked increase in the number of both c-Jun- and phosphorylated c-Jun-immunoreactive nuclei in the substantia nigra pars compacta. The response was maximal before any significant loss of nigral neurons could be detected (on day 7 post lesion) and was confined to the dopaminergic neurons. Similarly, 6-hydroxydopamine lesion of the striatal dopaminergic terminals or excitotoxic lesion of the striatal target neurons in neonatal rats resulted in an increased number of c-Jun- and phosphorylated c-Jun-immunoreactive nigral nuclei that preceded the loss of nigral dopaminergic neurons. By contrast, after an excitotoxic lesion of the striatal target neurons in the adult rat, resulting in atrophy but not cell death of the nigral dopaminergic neurons, no upregulation of either c-Jun or phosphorylated c-Jun was found. A single injection of 10 µg of glial-cell-line-derived-neurotrophic factor given at day 3 after the intrastriatal 6-hydroxydopamine lesion reduced the number of c-Jun- and phosphorylated c-Jun-immunoreactive nuclei in the substantia nigra and protected the dopaminergic neurons from the ensuing cell death. We conclude that c-Jun induction and phosphorylation may be involved in the cellular events leading to death of nigral dopaminergic neurons in vivo and that this response can be modulated by glial-cell-line-derived-neurotrophic factor. [source]


Catecholamine exocytosis is diminished in R6/2 Huntington's disease model mice

JOURNAL OF NEUROCHEMISTRY, Issue 5 2007
Michael A. Johnson
Abstract In this work, the mechanisms responsible for dopamine (DA) release impairments observed previously in Huntington's disease model R6/2 mice were evaluated. Voltammetrically measured DA release evoked in striatal brain slices from 12-week old R6/2 mice by a single electrical stimulus pulse was only 19% of wild-type (WT) control mice. Iontophoresis experiments suggest that the concentration of released DA is not diluted by a larger striatal extracellular volume arising from brain atrophy, but, rather, that striatal dopaminergic terminals have a decreased capacity for DA release. This decreased capacity was not due to an altered requirement for extracellular Ca2+, and, as in WT mice, the release in R6/2 mice required functioning vesicular transporters. Catecholamine secretion from individual vesicles was measured during exocytosis from adrenal chromaffin cells harvested from R6/2 and WT mice. While the number of exocytotic events was unchanged, the amounts released per vesicle were significantly diminished in R6/2 mice, indicating that vesicular catecholamines are present in decreased amounts. Treatment of chromaffin cells with 3-nitropropionic acid decreased the vesicular release amount from WT cells by 50%, mimicking the release observed from untreated R6/2 cells. Thus, catecholamine release from tissues isolated from R6/2 mice is diminished because of impaired vesicle loading. [source]


Effect of methylphenidate on dopamine/DARPP signalling in adult, but not young, mice

JOURNAL OF NEUROCHEMISTRY, Issue 6 2003
Ryuichi Fukui
Abstract Methylphenidate (MPH), a dopamine uptake inhibitor, is the most commonly prescribed drug for the treatment of attention-deficit/hyperactivity disorder (ADHD) in children. We examined the effect of MPH on dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP-32) phosphorylation at Thr34 (PKA-site) and Thr75 (Cdk5-site) using neostriatal slices from young (14,15- and 21,22-day-old) and adult (6,8-week-old) mice. MPH increased DARPP-32 Thr34 phosphorylation and decreased Thr75 phosphorylation in slices from adult mice. The effect of MPH was blocked by a dopamine D1 antagonist, SCH23390. In slices from young mice, MPH did not affect DARPP-32 phosphorylation. As with MPH, cocaine stimulated DARPP-32 Thr34 phosphorylation in slices from adult, but not from young mice. In contrast, a dopamine D1 agonist, SKF81297, regulated DARPP-32 phosphorylation comparably in slices from young and adult mice, as did methamphetamine, a dopamine releaser. The results suggest that dopamine synthesis and the dopamine transporter are functional at dopaminergic terminals in young mice. In contrast, the lack of effect of MPH in young mice is likely attributable to immature development of the machinery that regulates vesicular dopamine release. [source]