Home About us Contact | |||
Dopaminergic Neurons (dopaminergic + neuron)
Kinds of Dopaminergic Neurons Selected AbstractsPreferential Resistance of Dopaminergic Neurons to the Toxicity of Glutathione Depletion Is Independent of Cellular Glutathione Peroxidase and Is Mediated by TetrahydrobiopterinJOURNAL OF NEUROCHEMISTRY, Issue 6 2000Ken Nakamura Abstract: Depletion of glutathione in the substantia nigra is one of the earliest changes observed in Parkinson's disease (PD) and could initiate dopaminergic neuronal degeneration. Nevertheless, experimental glutathione depletion does not result in preferential toxicity to dopaminergic neurons either in vivo or in vitro. Moreover, dopaminergic neurons in culture are preferentially resistant to the toxicity of glutathione depletion, possibly owing to differences in cellular glutathione peroxidase (GPx1) function. However, mesencephalic cultures from GPx1-knockout and wild-type mice were equally susceptible to the toxicity of glutathione depletion, indicating that glutathione also has GPx1-independent functions in neuronal survival. In addition, dopaminergic neurons were more resistant to the toxicity of both glutathione depletion and treatment with peroxides than nondopaminergic neurons regardless of their GPx1 status. To explain this enhanced antioxidant capacity, we hypothesized that tetrahydrobiopterin (BH4) may function as an antioxidant in dopaminergic neurons. In agreement, inhibition of BH4 synthesis increased the susceptibility of dopaminergic neurons to the toxicity of glutathione depletion, whereas increasing BH4 levels completely protected nondopaminergic neurons against it. Our results suggest that BH4 functions as a complementary antioxidant to the glutathione/glutathione peroxidase system and that changes in BH4 levels may contribute to the pathogenesis of PD. [source] Dopaminergic Neurons in the Ventral Tegmental Area of C57BL/6J and DBA/2J Mice Differ in Sensitivity to Ethanol ExcitationALCOHOLISM, Issue 7 2000Mark S. Brodie Background: The mesolimbic dopamine pathway that originates in the ventral tegmental area (VTA) is important for the rewarding effects of ethanol. Ethanol has been shown to excite dopaminergic neurons of the VTA, both in vivo and in vitro, in rats. Behavioral differences in the rewarding effects of ethanol have been observed between C57BL/6J and DBA/2J mice. The present electrophysiological study examined the effect of ethanol on individual dopaminergic VTA neurons from these two inbred mouse strains. Methods: Extracellular single unit recordings of spontaneous action potentials were made from dopaminergic VTA neurons in brain slices from either C57BL/6J or DBA/2J mice. Ethanol (10 to 160 mM) was administered in the superfusate and the mean change in firing rate produced by ethanol was measured. Results: There was no significant difference in basal spontaneous firing rate of dopaminergic VTA neurons between these two mouse strains. Ethanol caused a concentration-dependent increase in the firing rate of neurons from both mouse strains. Ethanol excited dopaminergic VTA neurons from DBA/2J mice more potently than those from C57BL/6J mice. Conclusions: The difference in sensitivity to ethanol excitation of dopaminergic VTA neurons in C57BL/6J and DBA/2J mice may contribute to differences in their behavioral response to ethanol. The fact that a given concentration of ethanol causes greater excitation of dopaminergic VTA (reward) neurons in DBA/2J mice than in C57BL/6J mice could explain why DBA/2J mice show much stronger place preference conditioning with ethanol. The higher voluntary intake of ethanol by C57BL/6J mice may be partly due to the insensitivity of their dopaminergic VTA neurons that requires them to drink a lot of ethanol to achieve sufficient excitation of reward neurons, whereas DBA/2J mice avoid oral ingestion of ethanol, despite its rewarding effect, because of their aversion to its taste. [source] Ephrin-A5 regulates the formation of the ascending midbrain dopaminergic pathwaysDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2009Margaret A. Cooper Abstract Dopaminergic neurons from the substantia nigra and the ventral tegmental area of the midbrain project to the caudate/putamen and nucleus accumbens, respectively, establishing the mesostriatal and the mesolimbic pathways. However, the mechanisms underlying the development of these pathways are not well understood. In the current study, the EphA5 receptor and its corresponding ligand, ephrin-A5, were shown to regulate dopaminergic axon outgrowth and influence the formation of the midbrain dopaminergic pathways. Using a strain of mutant mice in which the EphA5 cytoplasmic domain was replaced with ,-galactosidase, EphA5 protein expression was detected in both the ventral tegmental area and the substantia nigra of the midbrain. Ephrin-A5 was found in both the dorsolateral and the ventromedial regions of the striatum, suggesting a role in mediating dopaminergic axon-target interactions. In the presence of ephrin-A5, dopaminergic neurons extended longer neurites in in vitro coculture assays. Furthermore, in mice lacking ephrin-A5, retrograde tracing studies revealed that fewer neurons sent axons to the striatum. These observations indicate that the interactions between ephrin-A ligands and EphA receptors promote growth and targeting of the midbrain dopaminergic axons to the striatum. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source] Role of activity-dependent mechanisms in the control of dopaminergic neuron survivalJOURNAL OF NEUROCHEMISTRY, Issue 2 2007Patrick P. Michel Abstract Dopaminergic neurons that constitute the nigrostriatal pathway are characterized by singular electrical properties that allow them to discharge in vivo spontaneously in a spectrum of patterns ranging from pacemaker to random and bursting modes. These electrophysiological features allow dopaminergic neurons to optimize the release of dopamine in their terminal fields. However, there is emerging evidence indicating that electrical activity might also participate in the control of dopaminergic neuron survival, not only during development, but also in the adult brain, thus raising the possibility that alterations in ionic currents could contribute actively to the demise of these neurons in Parkinson disease. This review focuses on the mechanisms by which activity-dependent mechanisms might modulate dopaminergic cell survival. [source] Glial reactions in Parkinson's diseaseMOVEMENT DISORDERS, Issue 4 2008Patrick L. McGeer MD Abstract Dopaminergic neurons of the substantia nigra are particularly vulnerable to oxidative and inflammatory attack. Such processes may play a crucial role in the etiology of Parkinson disease (PD). Since glia are the main generators of these processes, the possibility that PD may be caused by glial dysfunction needs to be considered. This review concentrates on glial reactions in PD. Reactive astrocytes and reactive microglia are abundant in the substantia nigra (SN) of PD cases indicating a robust inflammatory state. Glia normally serve neuroprotective roles but, given adverse stimulation, they may contribute to damaging chronic inflammation. Microglia, the phagocytes of brain, may be the main contributors since they can produce large numbers of superoxide anions and other neurotoxins. Their toxicity towards dopaminergic neurons has been demonstrated in tissue culture and various animal models of PD. The MPTP and ,-synuclein models are of particular interest. Years after exposure to MPTP, inflammation has been observed in the SN. This has established that an acute insult to the SN can result in a sustained local inflammation. The ,-synuclein model indicates that an endogenous protein can induce inflammation, and, when overexpressed, can lead to autosomal dominant PD. Less is known about the role of astrocytes than microglia, but they are known to secrete both inflammatory and anti-inflammatory molecules and may play a role in modulating microglial activity. Oligodendrocytes do not seem to play a role in promoting inflammation although, like neurons, they may be damaged by inflammatory processes. Further research concerning glial reactions in PD may lead to disease-modifying therapeutic approaches. © 2007 Movement Disorder Society [source] Neural protein Olig2 acts upstream of the transcriptional regulator sim1 to specify diencephalic dopaminergic neuronsDEVELOPMENTAL DYNAMICS, Issue 4 2009Nataliya Borodovsky Abstract Neural factors are expressed in neural progenitors and regulate neurogenesis and gliogenesis. Recent studies suggested that these factors are also involved in determining specific neuronal fates by regulating the expression of their target genes, thereby creating transcriptional codes for neuronal subtype specification. In the present study, we show that in the zebrafish the neural gene Olig2 and the transcriptional regulator Sim1 are co-expressed in a subset of diencephalic progenitors destined towards the dopaminergic (DA) neuronal fate. While sim1 mRNA is also detected in mature DA neurons, the expression of olig2 is extinguished prior to terminal DA differentiation. Loss of function of either Olig2 or Sim1 leads to impaired DA development. Finally, Olig2 regulates the expression of Sim1 and gain of function of Sim1 rescues the deficits in DA differentiation caused by targeted knockdown of Olig2. Our findings demonstrate for the first time that commitment of basal diencephalic DA neurons is regulated by the combined action of the neural protein Olig2 and its downstream neuronal specific effector Sim1. Developmental Dynamics 238:826,834, 2009. © 2009 Wiley-Liss, Inc. [source] Ephrin-A5 regulates the formation of the ascending midbrain dopaminergic pathwaysDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2009Margaret A. Cooper Abstract Dopaminergic neurons from the substantia nigra and the ventral tegmental area of the midbrain project to the caudate/putamen and nucleus accumbens, respectively, establishing the mesostriatal and the mesolimbic pathways. However, the mechanisms underlying the development of these pathways are not well understood. In the current study, the EphA5 receptor and its corresponding ligand, ephrin-A5, were shown to regulate dopaminergic axon outgrowth and influence the formation of the midbrain dopaminergic pathways. Using a strain of mutant mice in which the EphA5 cytoplasmic domain was replaced with ,-galactosidase, EphA5 protein expression was detected in both the ventral tegmental area and the substantia nigra of the midbrain. Ephrin-A5 was found in both the dorsolateral and the ventromedial regions of the striatum, suggesting a role in mediating dopaminergic axon-target interactions. In the presence of ephrin-A5, dopaminergic neurons extended longer neurites in in vitro coculture assays. Furthermore, in mice lacking ephrin-A5, retrograde tracing studies revealed that fewer neurons sent axons to the striatum. These observations indicate that the interactions between ephrin-A ligands and EphA receptors promote growth and targeting of the midbrain dopaminergic axons to the striatum. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source] Serotonin decreases generation of dopaminergic neurons from mesencephalic precursors via serotonin type 7 and type 4 receptorsDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2007J. Parga Abstract Inductive signals mediating the differentiation of neural precursors into serotonergic (5-HT) or dopaminergic neurons have not been clarified. We have recently shown that in cell aggregates obtained from rat mesencephalic precursors, reduction of serotonin levels induces a marked increase in generation of dopaminergic neurons. In the present study we treated rat neurospheres with antagonists of the main subtypes of 5-HT receptors, 5-HT transport inhibitors, or 5-HT receptor agonists, and studied the effects on generation of dopaminergic neurons. Cultures treated with Methiothepin (5-HT1,2,5,6,7 receptor antagonist), the 5-HT4 receptor antagonist GR113808;67:00,.or the 5-HT7 receptor antagonist SB 269970 showed a significant increase in generation of dopaminergic cells. Treatment with the 5-HT1B/1D antagonist GR 127935, the 5-HT2 antagonist Ritanserin, the 5-HT transporter inhibitor Fluoxetine, the dopamine and norepinephrine transport inhibitor GBR 12935, or with both inhibitors together, or 5-HT4 or 5-HT7 receptor agonists induced significant decreases in generation of dopaminergic cells. Cultures treated with WAY100635 (5-HT1A receptor antagonist), the 5-HT3 receptor antagonist Ondasetron, or the 5-HT6 receptor antagonist SB 258585 did not show any significant changes. Therefore, 5-HT4 and 5-HT7 receptors are involved in the observed serotonin-induced decrease in generation of dopaminergic neurons from proliferating neurospheres of mesencephalic precursors. 5-HT4 and 5-HT7 receptors were found in astrocytes and serotonergic cells using double immunolabeling and laser confocal microscopy, and the glial receptors appeared to play a major role. © 2006 Wiley Periodicals, Inc. J Neurobiol 67: 10,22, 2007 [source] Intrastriatal administration of human immunodeficiency virus-1 glycoprotein 120 reduces glial cell-line derived neurotrophic factor levels and causes apoptosis in the substantia nigraDEVELOPMENTAL NEUROBIOLOGY, Issue 12 2006Rachel L. Nosheny Abstract Uninfected neurons of the substantia nigra (SN) degenerate in human immunodeficiency virus (HIV)-positive patients through an unknown etiology. The HIV envelope glycoprotein 120 (gp120) causes apoptotic neuronal cell death in the rodent striatum, but its primary neurotoxic mechanism is still under investigation. Previous studies have shown that gp120 causes neurotoxicity in the rat striatum by reducing brain-derived neurotrophic factor (BDNF). Because glial cell line-derived neurotrophic factor (GDNF) and BDNF are neurotrophic factors crucial for the survival of dopaminergic neurons of the SN, we investigated whether gp120 reduces GDNF and BDNF levels concomitantly to induce apoptosis. Rats received a microinjection of gp120 or vehicle into the striatum and were sacrificed at various time intervals. GDNF but not BDNF immunoreactivity was decreased in the SN by 4 days in gp120-treated rats. In these animals, a significant increase in the number of caspase-3- positive neurons, both tyrosine hydroxylase (TH)-positive and -negative, was observed. Analysis of TH immunoreactivity revealed fewer TH-positive neurons and fibers in a medial and lateral portion of cell group A9 of the SN, an area that projects to the striatum, suggesting that gp120 induces retrograde degeneration of nigrostriatal neurons. We propose that dysfunction of the nigrostriatal dopaminergic system associated with HIV may be caused by a reduction of neurotrophic factor expression by gp120. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Early and transient ontogenetic expression of the cocaine- and amphetamine-regulated transcript peptide in the rat mesencephalon: Correlation with tyrosine hydroxylase expressionDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2002F. Brischoux Abstract The ontogeny of cocaine- and amphetamine-regulated transcript (CART) expression has been analyzed by immunohistochemistry in the mesencephalon of the rat central nervous system, and compared to the pattern of tyrosine hydroxylase- (TH-) expression. CART-producing neurons were first detected on the embryonic day 11 (E11) in the ventral mesencephalic vesicle. These neurons are among the first cells of the mantle layer to differentiate. From E13, a complementary pattern of distribution was observed, dividing the mantle layer into an external TH zone and an internal CART zone. Many TH-positive neurons were found to migrate from the neuroepithelium through the area containing the CART-immunoreactive neurons to settle more laterally. These TH cells exhibited prominent leading and trailing dendrites in the immediate vicinity of CART perikarya. On E16, the number of CART neurons appeared to diminish, and they were confined near the ventricle and around the fasciculus retroflexus. On E18 and E20, only the Edinger-Westphal nucleus exhibited a strong CART staining as described in the adult brain. Thus, the very early detection of CART during prenatal ontogeny led us to speculate that this peptide might have a role in the development of specific regions of the rat brain. In particular, our observations suggest that CART-expressing neurons might help the migration of the dopaminergic neurons of the substantia nigra. © 2002 Wiley Periodicals, Inc. J Neurobiol 52: 221,229, 2002 [source] PRECLINICAL STUDY: FULL ARTICLE: Altered architecture and functional consequences of the mesolimbic dopamine system in cannabis dependenceADDICTION BIOLOGY, Issue 3 2010Saturnino Spiga ABSTRACT Cannabinoid withdrawal produces a hypofunction of mesencephalic dopamine neurons that impinge upon medium spiny neurons (MSN) of the forebrain. After chronic treatment with two structurally different cannabinoid agonists, ,9 -tetrahydrocannabinol and CP55 940 (CP) rats were withdrawn spontaneously and pharmacologically with the CB1 antagonist SR141716A (SR). In these two conditions, evaluation of tyrosine hydroxylase (TH)-positive neurons revealed significant morphometrical reductions in the ventrotegmental area but not substantia nigra pars compacta of withdrawn rats. Similarly, confocal analysis of Golgi,Cox-stained sections of the nucleus accumbens revealed a decrease in the shell, but not the core, of the spines' density of withdrawn rats. Administration of the CB1 antagonist SR to control rats, provoked structural abnormalities reminiscent of those observed in withdrawal conditions and support the regulatory role of cannabinoids in neurogenesis, axonal growth and synaptogenesis by acting as eu-proliferative signals through the CB1 receptors. Further, these measures were incorporated into a realistic computational model that predicts a strong reduction in the excitability of morphologically altered MSN, yielding a significant reduction in action potential output. These pieces of evidence support the tenet that withdrawal from addictive compounds alters functioning of the mesolimbic system and provide direct morphological evidence for functional abnormalities associated with cannabinoid dependence at the level of dopaminergic neurons and their postsynaptic counterpart and are coherent with recent hypothesis underscoring a hypodopaminergic state as a distinctive feature of the ,addicted brain'. [source] CLINICAL STUDY: BRIEF REPORT: Ecstasy (MDMA)-addicted subjects show increased serum levels of brain-derived neurotrophic factor, independently from a rise of drug-induced psychotic symptomsADDICTION BIOLOGY, Issue 3 2010Francesco Angelucci ABSTRACT The recreational drug ,ecstasy'[3,4-methylenedioxymethamphetamine (MDMA)] exerts a potent action on central serotonergic and dopaminergic neurons. These neurons utilize neurotrophins for their survival and function. In order to explore MDMA effects on neurotrophins, we measured by enzyme-linked immunosorbent assay the serum levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in ,ecstasy-addicted', ,ecstasy-addicted with signs of psychosis' and ,healthy' subjects. We found that BDNF serum levels were significantly increased in both groups of ,ecstasy-addicted' as compared with ,healthy subjects', supporting the hypothesis that BDNF is involved in MDMA action. [source] PRECLINICAL STUDY: Electroacupuncture treatment reverses morphine-induced physiological changes in dopaminergic neurons within the ventral tegmental areaADDICTION BIOLOGY, Issue 4 2009Ling Hu ABSTRACT Chronic morphine administration decreases the size of dopamine (DA) neurons in the ventral tegmental area (VTA). These transient morphological changes are accompanied by a reduced sensitivity of morphine-induced conditioned place preference (CPP) after chronic exposure to the drug. In this study we examined alterations in the firing rate of DAergic neurons by means of extracellular recording following chronic morphine exposure and applied 100 Hz electroacupuncture (EA) treatment to reverse the reduced firing rate of these neurons. In the first set of experiments we show that in rats, which received chronic morphine treatment for 14 days, a small dose of morphine was not able to induce a CPP response anymore. However, the sensitivity to morphine was reinstated by consecutive EA treatment for 10 days. The electrophysiological response of VTA DA neurons to morphine was markedly reduced in chronic morphine-treated rats compared to saline-treated controls. A substantial recovery of the reactivity of VTA DA neurons to morphine was observed in rats that received 100 Hz EA for 10 days. Our findings suggest that 100 Hz EA is a potential therapy for the treatment of opiate addiction by normalizing the activity of VTA DA neurons. [source] Calbindin-1 association and Parkinson's diseaseEUROPEAN JOURNAL OF NEUROLOGY, Issue 2 2010A. I. Soto-Ortolaza Background and purpose:, Calcium levels have been proposed to play an important role in the selective vulnerability of nigrostriatal dopaminergic neurons in Parkinson's disease (PD). Recently, an association was reported between the calcium buffer, calbindin (rs1805874) and risk of PD in a Japanese patient,control series. Methods:, We genotyped rs1805874 in four independent Caucasian patient,control series (1543 PD patients, 1771 controls). Results:, There was no evidence of an association between rs1805874 and disease risk in individual populations or in the combined series (odds ratio: 1.04, 95% CI: 0.82,1.31, P = 0.74). Discussion:, Our study shows there is no association between rs1805874 and risk for PD in four Caucasian populations. This suggests the effect of calbindin on PD risk displays population specificity. [source] Acute action of rotenone on nigral dopaminergic neurons , involvement of reactive oxygen species and disruption of Ca2+ homeostasisEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2009Peter S. Freestone Abstract Rotenone is a toxin used to generate animal models of Parkinson's disease; however, the mechanisms of toxicity in substantia nigra pars compacta (SNc) neurons have not been well characterized. We have investigated rotenone (0.05,1 ,m) effects on SNc neurons in acute rat midbrain slices, using whole-cell patch-clamp recording combined with microfluorometry. Rotenone evoked a tolbutamide-sensitive outward current (94 ± 15 pA) associated with increases in intracellular [Ca2+] ([Ca2+]i) (73.8 ± 7.7 nm) and intracellular [Na+] (3.1 ± 0.6 mm) (all with 1 ,m). The outward current was not affected by a high ATP level (10 mm) in the patch pipette but was decreased by Trolox. The [Ca2+]i rise was abolished by removing extracellular Ca2+, and attenuated by Trolox and a transient receptor potential M2 (TRPM2) channel blocker, N -(p -amylcinnamoyl) anthranilic acid. Other effects included mitochondrial depolarization (rhodamine-123) and increased mitochondrial reactive oxygen species (ROS) production (MitoSox), which was also abolished by Trolox. A low concentration of rotenone (5 nm) that, by itself, did not evoke a [Ca2+]i rise resulted in a large (46.6 ± 25.3 nm) Ca2+ response when baseline [Ca2+]i was increased by a ,priming' protocol that activated voltage-gated Ca2+ channels. There was also a positive correlation between ,naturally' occurring variations in baseline [Ca2+]i and the rotenone-induced [Ca2+]i rise. This correlation was not seen in non-dopaminergic neurons of the substantia nigra pars reticulata (SNr). Our results show that mitochondrial ROS production is a key element in the effect of rotenone on ATP-gated K+ channels and TRPM2-like channels in SNc neurons, and demonstrate, in these neurons (but not in the SNr), a large potentiation of rotenone-induced [Ca2+]i rise by a small increase in baseline [Ca2+]i. [source] Mu opioid receptor modulation of somatodendritic dopamine overflow: GABAergic and glutamatergic mechanismsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2009V. I. Chefer Abstract Mu opioid receptor (MOR) regulation of somatodendritic dopamine neurotransmission in the ventral tegmental area (VTA) was investigated using conventional microdialysis in freely moving rats and mice. Reverse dialysis of the MOR agonist DAMGO (50 and 100 ,m) into the VTA of rats produced a concentration-dependent increase in dialysate dopamine concentrations. Basal dopamine overflow in the VTA was unaltered in mice lacking the MOR gene. However, basal ,-aminobutyric acid (GABA) overflow in these animals was significantly increased, whereas glutamate overflow was decreased. Intra-VTA perfusion of DAMGO into wild-type (WT) mice increased dopamine overflow. GABA concentrations were decreased, whereas glutamate concentrations in the VTA were unaltered. Consistent with the loss of MOR, no effect of DAMGO was observed in MOR knockout (KO) mice. These data provide the first direct demonstration of tonically active MOR systems in the VTA that regulate basal glutamatergic and GABAergic neurotransmission in this region. We hypothesize that increased GABAergic neurotransmission following constitutive deletion of MOR is due to the elimination of a tonic inhibitory influence of MOR on GABAergic neurons in the VTA, whereas decreased glutamatergic neurotransmission in MOR KO mice is a consequence of intensified GABA tone on glutamatergic neurons and/or terminals. As a consequence, somatodendritic dopamine release is unaltered. Furthermore, MOR KO mice do not exhibit the positive correlation between basal dopamine levels and the glutamate/GABA ratio observed in WT mice. Together, our findings indicate a critical role of VTA MOR in maintaining an intricate balance between excitatory and inhibitory inputs to dopaminergic neurons. [source] Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networksEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2008Henry H. Yin Abstract Here we challenge the view that reward-guided learning is solely controlled by the mesoaccumbens pathway arising from dopaminergic neurons in the ventral tegmental area and projecting to the nucleus accumbens. This widely accepted view assumes that reward is a monolithic concept, but recent work has suggested otherwise. It now appears that, in reward-guided learning, the functions of ventral and dorsal striata, and the cortico-basal ganglia circuitry associated with them, can be dissociated. Whereas the nucleus accumbens is necessary for the acquisition and expression of certain appetitive Pavlovian responses and contributes to the motivational control of instrumental performance, the dorsal striatum is necessary for the acquisition and expression of instrumental actions. Such findings suggest the existence of multiple independent yet interacting functional systems that are implemented in iterating and hierarchically organized cortico-basal ganglia networks engaged in appetitive behaviors ranging from Pavlovian approach responses to goal-directed instrumental actions controlled by action-outcome contingencies. [source] Oxidative stress on EAAC1 is involved in MPTP-induced glutathione depletion and motor dysfunctionEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2008Koji Aoyama Abstract Excitatory amino acid carrier 1 (EAAC1) is a glutamate transporter expressed on mature neurons in the CNS, and is the primary route for uptake of the neuronal cysteine needed to produce glutathione (GSH). Parkinson's disease (PD) is a neurodegenerative disorder pathogenically related to oxidative stress and shows GSH depletion in the substantia nigra (SN). Herein, we report that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, an experimental model of PD, showed reduced motor activity, reduced GSH contents, EAAC1 translocation to the membrane and increased levels of nitrated EAAC1. These changes were reversed by pre-administration of n-acetylcysteine (NAC), a membrane-permeable cysteine precursor. Pretreatment with 7-nitroindazole, a specific neuronal nitric oxide synthase inhibitor, also prevented both GSH depletion and nitrotyrosine formation induced by MPTP. Pretreatment with hydrogen peroxide, l -aspartic acid ,-hydroxamate or 1-methyl-4-phenylpyridinium reduced the subsequent cysteine increase in midbrain slice cultures. Studies with chloromethylfluorescein diacetate, a GSH marker, demonstrated dopaminergic neurons in the SN to have increased GSH levels after NAC treatment. These findings suggest that oxidative stress induced by MPTP may reduce neuronal cysteine uptake, via EAAC1 dysfunction, leading to impaired GSH synthesis, and that NAC would exert a protective effect against MPTP neurotoxicity by maintaining GSH levels in dopaminergic neurons. [source] Disruption of dopamine homeostasis underlies selective neurodegeneration mediated by ,-synucleinEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2007Soon S. Park Abstract A key challenge in Parkinson's disease research is to understand mechanisms underlying selective degeneration of dopaminergic neurons mediated by genetic factors such as ,-synuclein (,-Syn). The present study examined whether dopamine (DA)-dependent oxidative stress underlies ,-Syn-mediated neurodegeneration using Drosophila primary neuronal cultures. Green fluorescent protein (GFP) was used to identify live dopaminergic neurons in primary cultures prepared on a marked photoetched coverslip, which allowed us to repeatedly access preidentified dopaminergic neurons at different time points in a non-invasive manner. This live tracking of GFP-marked dopaminergic neurons revealed age-dependent neurodegeneration mediated by a mutant human ,-Syn (A30P). Degeneration was rescued when ,-Syn neuronal cultures were incubated with 1 mm glutathione from Day 3 after culturing. Furthermore, depletion of cytoplasmic DA by 100 µm,-methyl- p -tyrosine completely rescued the early stage of ,-Syn-mediated dopaminergic cell loss, demonstrating that DA plays a major role in oxidative stress-dependent neurodegeneration mediated by ,-Syn. In contrast, overexpression of a Drosophila tyrosine hydroxylase gene (dTH1) alone caused DA neurodegeneration by enhanced DA synthesis in the cytoplasm. Age-dependent dopaminergic cell loss was comparable in ,-Syn vs dTH1-overexpressed neuronal cultures, indicating that increased DA levels in the cytoplasm is a critical change downstream of mutant ,-Syn function. Finally, overexpression of a Drosophila vesicular monoamine transporter rescued ,-Syn-mediated neurodegeneration through enhanced sequestration of cytoplasmic DA into synaptic vesicles, further indicating that a main cause of selective neurodegeneration is ,-Syn-induced disruption of DA homeostasis. All of these results demonstrate that elevated cytoplasmic DA is a main factor underlying the early stage of ,-Syn-mediated neurodegeneration. [source] Oxytocin injected into the ventral tegmental area induces penile erection and increases extracellular dopamine in the nucleus accumbens and paraventricular nucleus of the hypothalamus of male ratsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2007Maria Rosaria Melis Abstract The neuropeptide oxytocin (20,100 ng), induces penile erection when injected unilaterally into the caudal but not rostral mesencephalic ventral tegmental area (VTA) of male Sprague,Dawley rats. Such pro-erectile effect started 30 min after treatment and was abolished by the prior injection of d(CH2)5Tyr(Me)2 -Orn8 -vasotocin (1 µg), an oxytocin receptor antagonist injected into the same caudal ventral tegmental area or of haloperidol (1 µg), a dopamine receptor antagonist, injected either into the nucleus accumbens shell (NAs) or into the paraventricular nucleus of the hypothalamus (PVN) ipsilateral to the injected ventral tegmental area. Penile erection was seen 15 min after the occurrence of, or concomitantly to, an increase in extracellular dopamine and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the dialysate obtained from the nucleus accumbens or the paraventricular nucleus, which was also abolished by d(CH2)5Tyr(Me)2 -Orn8 -vasotocin (1 µg), injected into the ventral tegmental area before oxytocin. In the caudal ventral tegmental area oxytocin-containing axons/fibres (originating from the paraventricular nucleus) appeared to closely contact cell bodies of mesolimbic dopaminergic neurons retrogradely labelled with Fluorogold injected into the nucleus accumbens shell, suggesting that oxytocin effects are mediated by the activation of mesolimbic dopaminergic neurons, followed in turn by that of incerto-hypothalamic dopaminergic neurons impinging on oxytocinergic neurons mediating penile erection. As the stimulation of paraventricular dopamine receptors not only induces penile erection, but also increases mesolimbic dopamine neurotransmission by activating oxytocinergic neurons, these results provide further support for the existence of a neural circuit in which dopamine and oxytocin influence both the consummatory and motivational/rewarding aspects of sexual behaviour. [source] A modified MPTP treatment regime produces reproducible partial nigrostriatal lesions in common marmosetsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2005Mahmoud M. Iravani Abstract Standard MPTP treatment regimens in primates result in >,85% destruction of nigral dopaminergic neurons and the onset of marked motor deficits that respond to known symptomatic treatments for Parkinson's disease (PD). The extent of nigral degeneration reflects the late stages of PD rather than events occurring at its onset. We report on a modified MPTP treatment regimen that causes nigral dopaminergic degeneration in common marmosets equivalent to that occurring at the time of initiation of motor symptoms in man. Subcutaneous administration of MPTP 1 mg/kg for 3 consecutive days caused a reproducible 60% loss of nigral tyrosine hydroxylase (TH)-positive cells, which occurred mainly in the calbindin-D28k -poor nigrosomes with a similar loss of TH-immunoreactivity (TH-ir) in the caudate nucleus and the putamen. The animals showed obvious motor abnormalities with reduced bursts of activity and the onset of motor disability. However, the loss of striatal terminals did not reflect early PD because a greater loss of TH-ir occurred in the caudate nucleus than in the putamen and a marked reduction in TH-ir occurred in striatal patches compared to the matrix. Examination of striatal fibres following a partial MPTP lesion showed a conspicuous increase in the number and the diameter of large branching fibres in the putaminal and to some extent caudatal matrix, pointing to a possible compensatory sprouting of dopaminergic terminals. In addition, these partially lesioned animals did not respond to acute treatment with L-DOPA. This primate partial lesions model may be useful for examining potential neuroprotective or neurorestorative agents for PD. [source] Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2004Suling Zhao Abstract We have generated embryonic stem (ES) cells and transgenic mice with green fluorescent protein (GFP) inserted into the Pitx3 locus via homologous recombination. In the central nervous system, Pitx3 -directed GFP was visualized in dopaminergic (DA) neurons in the substantia nigra and ventral tegmental area. Live primary DA neurons can be isolated by fluorescence-activated cell sorting from these transgenic mouse embryos. In culture, Pitx3,GFP is coexpressed in a proportion of ES-derived DA neurons. Furthermore, ES cell-derived Pitx3,GFP expressing DA neurons responded to neurotrophic factors and were sensitive to DA-specific neurotoxin N-4-methyl-1, 2, 3, 6-tetrahydropyridine. We anticipate that the Pitx3,GFP ES cells could be used as a powerful model system for functional identification of molecules governing mDA neuron differentiation and for preclinical research including pharmaceutical drug screening and transplantation. The Pitx3 knock-in mice, on the other hand, could be used for purifying primary neurons for molecular studies associated with the midbrain-specific DA phenotype at a level not previously feasible. These mice would also provide a useful tool to study DA fate determination from embryo- or adult-derived neural stem cells. [source] The subcellular localization of GABAB receptor subunits in the rat substantia nigraEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2003Justin Boyes Abstract The inhibitory effects of GABA within the substantia nigra (SN) are mediated in part by metabotropic GABAB receptors. To better understand the mechanisms underlying these effects, we have examined the subcellular localization of the GABAB receptor subunits, GABAB1 and GABAB2, in SN neurons and afferents using pre-embedding immunocytochemistry combined with anterograde or retrograde labelling. In both the SN pars compacta (SNc) and pars reticulata (SNr), GABAB1 and GABAB2 showed overlapping, but distinct, patterns of immunolabelling. GABAB1 was more strongly expressed by putative dopaminergic neurons in the SNc than by SNr projection neurons, whereas GABAB2 was mainly expressed in the neuropil of both regions. Immunogold labelling for GABAB1 and GABAB2 was localized in presynaptic and postsynaptic elements throughout the SN. The majority of labelling was intracellular or was associated with extrasynaptic sites on the plasma membrane. In addition, labelling for both subunits was found on the presynaptic and postsynaptic membranes at symmetric, putative GABAergic synapses, including those formed by anterogradely labelled striatonigral and pallidonigral terminals. Labelling was also observed on the presynaptic membrane and at the edge of the postsynaptic density at asymmetric, putative excitatory synapses. Double immunolabelling, using the vesicular glutamate transporter 2, revealed the glutamatergic nature of many of the immunogold-labelled asymmetric synapses. The widespread distribution of GABAB subunits in the SNc and SNr suggests that GABAB -mediated effects in these regions are likely to be more complex than previously described, involving presynaptic autoreceptors and heteroreceptors, and postsynaptic receptors on different populations of SN neurons. [source] Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2003Simone M. Smits Abstract The mesencephalic dopaminergic (mesDA) system is involved in many brain functions including motor control and motivated behaviour, and is of clinical importance because of its implication in psychiatric disorders and Parkinson's disease. Nurr1, a member of the nuclear hormone receptor superfamily of transcription factors, is essential for establishing the dopaminergic phenotype, because expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, requires Nurr1. In addition, Nurr1 plays an important role in the maintenance of mesDA neurons. Neonatal Nurr1 knockout mice lack expression of the dopamine transporter (DAT), the vesicular monoamine transporter 2 (VMAT2) and l -aromatic amino acid decarboxylase (AADC) in addition to TH specifically in mesDA neurons. It is unclear whether the lack of expression of these dopaminergic markers is caused by a maintenance defect or whether the induction of these markers depends on Nurr1 expression. To address this problem, the expression of DAT, VMAT2 and AADC was analysed at embryonic day 12.5 and 14.5. Here we demonstrate that induction of VMAT2 and DAT specifically in mesDA neurons requires Nurr1 expression, whereas AADC expression in mesDA neurons is induced independently of Nurr1 function. [source] Effects of nicotine in the dopaminergic system of mice lacking the alpha4 subunit of neuronal nicotinic acetylcholine receptorsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2003L. M. Marubio Abstract The mesostriatal dopaminergic system influences locomotor activity and the reinforcing properties of many drugs of abuse including nicotine. Here we investigate the role of the ,4 nicotinic acetylcholine receptor (nAChR) subunit in mediating the effects of nicotine in the mesolimbic dopamine system in mice lacking the ,4 subunit. We show that there are two distinct populations of receptors in the substantia nigra and striatum by using autoradiographic labelling with 125I ,-conotoxin MII. These receptors are comprised of the ,4, ,2 and ,6 nAChR subunits and non-,4, ,2, and ,6 nAChR subunits. Non-,4 subunit-containing nAChRs are located on dopaminergic neurons, are functional and respond to nicotine as demonstrated by patch clamp recordings. In vivo microdialysis performed in awake, freely moving mice reveal that mutant mice have basal striatal dopamine levels which are twice as high as those observed in wild-type mice. Despite the fact that both wild-type and ,4 null mutant mice show a similar increase in dopamine release in response to intrastriatal KCl perfusion, a nicotine-elicited increase in dopamine levels is not observed in mutant mice. Locomotor activity experiments show that there is no difference between wild-type and mutant mice in basal activity in both habituated and non-habituated environments. Interestingly, mutant mice sustain an increase in cocaine-elicited locomotor activity longer than wild-type mice. In addition, mutant mice recover from depressant locomotor activity in response to nicotine at a faster rate. Our results indicate that ,4-containing nAChRs exert a tonic control on striatal basal dopamine release, which is mediated by a heterogeneous population of nAChRs. [source] D2 Dopamine receptor blockade results in sprouting of DA axons in the intact animal but prevents sprouting following nigral lesionsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2003W. Tripanichkul Abstract Recently it was demonstrated that sprouting of dopaminergic neurons and a microglial and astrocyte response follows both partial lesions of the substantia nigra pars compacta and blockade of the D2 dopamine receptor. We therefore studied the effects of the combination of these two treatments (lesioning and D2 dopamine receptor blockade). Haloperidol administration caused a 57% increase in dopaminergic terminal tree size (measured as terminal density per substantia nigra pars compacta neuron) and an increase of glia in the striatum. Following small to medium nigral lesions (less than 60%), terminal tree size increased by 51% on average and returned density of dopaminergic terminals to normal. In contrast, administration of haloperidol for 16 weeks following lesioning resulted in reduced dopaminergic terminal density and terminal tree size (13%), consistent with absent or impaired sprouting. Glial cell numbers increased but were less than with lesions alone. When haloperidol was administered after the striatum had been reinnervated through sprouting (16,32 weeks after lesioning), terminal tree size increased up to 150%, similar to the effect of haloperidol in normal animals. By examining the effect of administering haloperidol at varying times following a lesion, we concluded that a switch in the effect of D2 dopamine receptor blockade occurred after dopaminergic synapses began to form in the striatum. We postulate that when synapses are present, D2 dopamine receptor blockade results in increased terminal density, whereas prior to synapse formation D2 dopamine receptor blockade causes attenuation of a sprouting response. We speculate that D2 dopamine receptors located on growth cones ,push' neurites toward their targets, and blockade of these receptors could lead to attenuation of sprouting. [source] The mouse MPTP model: gene expression changes in dopaminergic neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2003Kati Kühn Abstract Parkinson's disease (PD) is a common neurodegenerative disorder, characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Although valuable animal models have been developed, our knowledge of the aetiology and pathogenic factors implicated in PD is still insufficient to develop causal therapeutic strategies aimed at halting its progression. The neurotoxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is one of the most valuable models for analysing pathological aspects of PD. In this paper we studied the gene expression patterns underlying the pathogenesis of MPTP-induced neurodegeneration. We treated young and old C57BL/6 mice with different schedules of MPTP to induce degenerative processes that vary in intensity and time-course. During the first week after intoxication we used nonradioactive in situ -hybridization to investigate the expression patterns of genes associated with (i) dopamine metabolism and signalling; (ii) familial forms of PD; (iii) protein folding and (iv) energy metabolism. MPTP injections induced different severities of neuronal injury depending on the age of the animals and the schedule of administration as well as a significant degeneration in the striatum. In situ hybridization showed that MPTP intoxication initiated a number of gene expression changes that (i) were restricted to the neurons of the substantia nigra pars compacta; (ii) were correlated in intensity and number of changes with the age of the animals and the severity of histopathological disturbances; (iii) displayed in each a significant down-regulation by the end of one week after the last MPTP injection, but (iv) varied within one MPTP regimen in expression levels during the observation period. The subacute injection of MPTP into one-year-old mice induced the most severe changes in gene expression. All genes investigated were affected. However, ,-synuclein was the only gene that was exclusively up-regulated in MPTP-treated animals displaying cell death. [source] Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2002Sangmi Chung Abstract Nurr1 is a transcription factor critical for the development of midbrain dopaminergic (DA) neurons. This study modified mouse embryonic stem (ES) cells to constitutively express Nurr1 under the elongation factor-1, promoter. The Nurr1-expression in ES cells lead to up-regulation of all DA neuronal markers tested, resulting in about a 4- to 5-fold increase in the proportion of DA neurons. In contrast, other neuronal and glial markers were not significantly changed by Nurr1 expression. It was also observed that there was an additional 4-fold increase in the number of DA neurons in Nurr1-expressing clones following treatment with Shh, FGF8 and ascorbic acid. Several lines of evidence suggest that these neurons may represent midbrain DA neuronal phenotypes; firstly, they coexpress midbrain DA markers such as aromatic l -amino acid decarboxylase, calretinin, and dopamine transporter, in addition to tyrosine hydroxylase and secondly, they do not coexpress other neurotransmitters such as GABA or serotonin. Finally, consistent with an increased number of DA neurons, the Nurr1 transduction enhanced the ability of these neurons to produce and release DA in response to membrane depolarization. This study demonstrates an efficient genetic manipulation of ES cells that facilitates differentiation to midbrain DA neurons, and it will serve as a framework of genetic engineering of ES cells by key transcription factor to regulate their cell fate. [source] Chronic nicotine treatment changes the axonal distribution of 68 kDa neurofilaments in the rat ventral tegmental areaEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2002Andrea Sbarbati Abstract Region-specific decreases of neurofilament proteins (NF) were described in the ventral tegmental area (VTA) of rats treated chronically with morphine, cocaine or alcohol. In a previous study, we demonstrated that NF levels were also changed in the VTA after chronic treatment with nicotine. The aim of this study was to clarify the submicroscopic basis of decreased immunoreactivity for NF-68, NF-160 and NF-200, as determined by using NR4, BF10 and RT97 antibodies, respectively. Microdensitometric analysis of brain sections showed that immunoreactivity for all NF was reduced in the VTA of animals exposed chronically to nicotine (0.4 mg/kg per day, 6 days of treatment), when compared to rats exposed to saline. Reduction in immunoreactivity was significant for NF-68 (P < 0.05), NF-160 (P < 0.01) and NF-200 (P < 0.05), showing a relative reduction of 34%, 42% and 38%, respectively, when compared to saline-treated rats. No difference was observed for any of the NF under study when immunoreactivity measurements in the substantia nigra were compared. Ultrastructural analysis was applied to evaluate changes in NF-68, NF-160 and NF-200 immunoreactivity in regions of the VTA that contain dopaminergic neurons following chronic nicotine treatment. At the electron microscopic level, no degenerative changes were found in neurons or glial cells of the VTA. With ultrastructural immunohistochemistry, evaluation of the homogeneity parameter of NF distribution showed a loss of homogeneity for NF-68 linked to the nicotine treatment. In areas in which NF organization appeared well preserved, analysis of the numerical density of NF revealed no significant difference for NF-68 (897/µm2 vs. 990/µm2), NF-160 (970/µm2 vs. 820/µm2) and NF-200 (1107/µm2 vs. 905/µm2) in nicotine-treated rats when compared to saline-treated rats. These results confirm that nicotine shares the same properties with cocaine and morphine in reducing NF in the VTA, a key brain structure of the rewards system, and that chronic nicotine treatment changes the axonal distribution of 68 kDa neurofilaments in the rat VTA. [source] Degeneration of pontine mossy fibres during cerebellar development in weaver mutant miceEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2002Miwako Ozaki Abstract In weaver mutant mice, substitution of an amino acid residue in the pore region of GIRK2, a subtype of the G-protein-coupled inwardly rectifying K+ channel, changes the properties of the homomeric channel to produce a lethal depolarized state in cerebellar granule cells and dopaminergic neurons in substantia nigra. Degeneration of these types of neurons causes strong ataxia and Parkinsonian phenomena in the mutant mice, respectively. On the other hand, the mutant gene is also expressed in various other brain regions, in which the mutant may have effects on neuronal survival. Among these regions, we focused on the pontine nuclei, the origin of the pontocerebellar mossy fibres, projecting mainly into the central region of the cerebellar cortex. The results of histological analysis showed that by P9 the number of neurons in the nuclei was reduced in the mutant to about one half and by P18 to one third of those in the wild type, whereas until P7 the number were about the same in wild-type and weaver mutant mice. Three-dimensional reconstruction of the nuclei showed a marked reduction in volume and shape of the mutant nuclei, correlating well with the decrease in neuronal number. In addition, DiI (a lipophilic tracer dye) tracing experiments revealed retraction of pontocerebellar mossy fibres from the cerebellar cortex after P5. From these results, we conclude that projecting neurons in the pontine nuclei, as well as cerebellar granule cells and dopaminergic neurons in substantia nigra, strongly degenerate in weaver mutant mice, resulting in elimination of pontocerebellar mossy fibres during cerebellar development. [source] |