Dopamine Melanin (dopamine + melanin)

Distribution by Scientific Domains


Selected Abstracts


Dopamine melanin-loaded PC12 cells: a model for studies on pigmented neurons

PIGMENT CELL & MELANOMA RESEARCH, Issue 4 2005
Anna Östergren
Summary The most conspicuous feature in idiopathic parkinsonism is the degeneration of pigmented neurons in the substantia nigra. A major problem for the study of the significance of neuromelanin for the development of parkinsonism is that common experimental animals lack neuromelanin in substantia nigra. The aim of this study was to develop an in vitro model that could be used to study the role of neuromelanin in chemically induced toxicity in dopaminergic cells. Cultured neuron-like PC12 cells were exposed to synthetic dopamine melanin (0,1.0 mg/ml) for 48 h, resulting in uptake of dopamine melanin particles into the cells. The intracellular distribution of dopamine melanin granules was similar to that found in neuromelanin-containing neurons. Dopamine melanin, up to 0.5 mg/ml, had negligible effects on ultrastructure, induction of the endoplasmic reticulum-stress protein glucose regulating protein 78, activation of caspase-3 and cell viability. The decreased cell viability in response to the cytotoxic peptide amyloid- ,25,35 was similar in melanin-loaded cells and in control cells without melanin. The results of the studies suggest that melanin-loaded PC12 cells can serve as an in vitro model for studies on the role of neuromelanin for the toxicity of chemicals, in particular neurotoxicants with melanin affinity, in pigmented neurons. [source]


Neuromelanin selectively induces apoptosis in dopaminergic SH-SY5Y cells by deglutathionylation in mitochondria: involvement of the protein and melanin component

JOURNAL OF NEUROCHEMISTRY, Issue 6 2008
Makoto Naoi
Abstract Parkinson's disease (PD) is characterized by selective depletion of nigral dopamine (DA) neurons containing neuromelanin (NM), suggesting the involvement of NM in the pathogenesis. This study reports induction of apoptosis by NM in SH-SY5Y cells, whereas protease-K-treated NM, synthesized DA- and cysteinyl dopamine melanin showed much less cytotoxicity. Cell death was mediated by mitochondria-mediated apoptotic pathway, namely collapse of mitochondrial membrane potential, release of cytochrome c, and activation of caspase 3, but Bcl-2 over-expression did not suppress apoptosis. NM increased sulfhydryl content in mitochondria, and a major part of it was identified as GSH, whereas dopamine melanin significantly reduced sulfhydryl levels. Western blot analysis for protein-bound GSH demonstrated that only NM reduced S -glutathionylated proteins in mitochondria and dissociated macromolecular structure of complex I. Reactive oxygen and nitrogen species were required for the deglutathionylation by NM, which antioxidants reduced significantly with prevention of apoptosis. These results suggest that NM may be related to cell death of DA neurons in PD and aging through regulation of mitochondrial redox state and S -glutathionylation, for which NM-associated protein is absolutely required. The novel function of NM is discussed in relation to the pathogenesis of PD. [source]


Dopamine melanin-loaded PC12 cells: a model for studies on pigmented neurons

PIGMENT CELL & MELANOMA RESEARCH, Issue 4 2005
Anna Östergren
Summary The most conspicuous feature in idiopathic parkinsonism is the degeneration of pigmented neurons in the substantia nigra. A major problem for the study of the significance of neuromelanin for the development of parkinsonism is that common experimental animals lack neuromelanin in substantia nigra. The aim of this study was to develop an in vitro model that could be used to study the role of neuromelanin in chemically induced toxicity in dopaminergic cells. Cultured neuron-like PC12 cells were exposed to synthetic dopamine melanin (0,1.0 mg/ml) for 48 h, resulting in uptake of dopamine melanin particles into the cells. The intracellular distribution of dopamine melanin granules was similar to that found in neuromelanin-containing neurons. Dopamine melanin, up to 0.5 mg/ml, had negligible effects on ultrastructure, induction of the endoplasmic reticulum-stress protein glucose regulating protein 78, activation of caspase-3 and cell viability. The decreased cell viability in response to the cytotoxic peptide amyloid- ,25,35 was similar in melanin-loaded cells and in control cells without melanin. The results of the studies suggest that melanin-loaded PC12 cells can serve as an in vitro model for studies on the role of neuromelanin for the toxicity of chemicals, in particular neurotoxicants with melanin affinity, in pigmented neurons. [source]