Distributed Only (distributed + only)

Distribution by Scientific Domains


Selected Abstracts


Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea

FEMS MICROBIOLOGY ECOLOGY, Issue 3 2009
Dong Han Choi
Abstract Phylogenetic relationships among 33 Synechococcus strains isolated from the East China Sea (ECS) and the East Sea (ES) were studied based on 16S rRNA gene sequences and 16S,23S rRNA gene internal transcribed spacer (ITS) sequences. Pigment patterns of the culture strains were also examined. Based on 16S rRNA gene and ITS sequence phylogenies, the Synechococcus isolates were clustered into 10 clades, among which eight were previously identified and two were novel. Half of the culture strains belonged to clade V or VI. All strains that clustered into novel clades exhibited both phycoerythrobilin and phycourobilin. Interestingly, the pigment compositions of isolates belonging to clades V and VI differed from those reported for other oceanic regions. None of the isolates in clade V showed phycourobilin, whereas strains in clade VI exhibited both phycourobilin and phycoerythrobilin, which is in contrast to previous studies. The presence of novel lineages and the different pigment patterns in the ECS and the ES suggests the possibility that some Synechococcus lineages are distributed only in geographically restricted areas and have evolved in these regions. Therefore, further elucidation of the physiological, ecological, and genetic characteristics of the diverse Synechococcus strains is required to understand their spatial and geographical distribution. [source]


A MODIFIED RATIONAL FORMULA FOR FLOOD DESIGN IN SMALL BASINS,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2003
Jiapeng Hua
ABSTRACT: New formulas and procedures under the framework of the Rational Formula are presented that are applicable to flood design problems for a small basin if the geometry of the basin can be approximated as an ellipse or a rhombus. Instead of making the assumption in the traditional rational formula that the rainfall is uniformly distributed in the whole duration (Dw) of a design storm, the new method modifies that assumption as: the rainfall is uniformly distributed only in each time interval CD) of the design storm hyetograph, thus extending the rational formula applicable to the case that the rainfall duration is less than the basin concentration time (Tc). The new method can be applied to estimate the flood design peak discharge, and to generate the flood hydrograph simultaneously. The derivation of the formulas is provided in detail in this paper, and an example is also included to illustrate how to apply the new formulas to the flood design problems in small basins. [source]


The first fossil Bothriocerinae from Eocene Baltic amber with notes on recent taxa (Hemiptera, Fulgoromorpha, Cixiidae)

MITTEILUNGEN AUS DEM MUSEUM FUER NATURKUNDE IN BERLIN-DEUTSCHE ENTOMOLOGISCHE ZEITSCHRIFT, Issue 2 2002
Jacek Szwedo
Abstract The first fossil representative of Bothriocerinae (Hemiptera: Fulgoromorpha: Cixiidae) from Eocene Baltic amber is described. This small group is currently distributed only in the New World. The fossil presents the evidence of a wider distribution of this group in the past. Bothriobaltia pietrzeniukae gen. and sp. n. is described and illustrated. Fossil record of the family, paleogeography of the Eocene, distribution pattern, phylogeny and ecology of the group in view of fossil record are discussed. [source]


Pharmaceutical and Biomedical Differences between Micellar Doxorubicin (NK911) and Liposomal Doxorubicin (Doxil)

CANCER SCIENCE, Issue 10 2002
Yoshihisa Tsukioka
The stability and biological behavior of an in vitro system of doxorubicin (DXR) entrapped in NK911, polymer micelles, was examined and compared with those of DXR entrapped in Doxil, polyethylene-glycol-conjugated liposomes. The fluorescence of DXR inside micelles or liposomes in an aqueous solution is known to be strongly quenched by the outer shells of the micellar or liposomal formation. Thus, by measuring the fluorescence intensity of DXR released from NK911 or Doxil, we could determine the stability of the micellar or liposomal DXR formation. Furthermore, NK911 was found to be less stable than Doxil in saline solution. In drug distribution experiments using an in vitro solid tumor model, when spheroids formed from two human colonic cancer lines, HT-29 and WiDr, and a human stomach cancer line, MKN28, were exposed to NK911, DXR was distributed throughout the spheroids, including their center. On the other hand, when the spheroids were exposed to Doxil, DXR was distributed only to the surface of the spheroids. It has been suggested that Doxil can deliver DXR to a solid tumor more efficiently than NK911 via the EPR (enhanced permeability and retention) effect, because Doxil may be more stable in plasma than NK911. On the other hand, DXR packed in NK911 may be distributed by diffusion to cancer cells distant from the tumor vessel, because NK911 can leak out of the tumor vessel and may be able to release free DXR more easily than Doxil. It has been suggested that drug carrier systems such as liposomes and micelles should be selected appropriately bearing in mind the characteristics of the tumor vasculature and the tumor interstitium. [source]