Distributed Hydrological Model (distributed + hydrological_model)

Distribution by Scientific Domains


Selected Abstracts


Estimating the evolution of vegetation cover and its hydrological impact in the Mekong River basin in the 21st century

HYDROLOGICAL PROCESSES, Issue 9 2008
Hiroshi Ishidaira
Abstract The terrestrial biosphere plays a key role in regional energy and water cycles. Thus, for long-term hydrological predictions, possible future changes in vegetation cover must be understood. This study examined the evolution of vegetation cover in the 21st century and its estimated impact on river discharge in the Mekong River basin. Based on climatic predictions (TYN SC 2·03) under the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A1FI, A2, B1, and B2, changes in vegetation type and the leaf area index (LAI) were simulated using a Lund-Potsdam-Jena-Dynamic Global Vegetation Model (LPJ-DGVM) and Terrestrial Biogeochemical Cycle Model (BIOME-BGC). The estimated LAI was then used in the rainfall-runoff analysis in the Yamanashi Distributed Hydrological Model (YHyM). The simulation results indicated a significant change in vegetation type mainly on the Tibetan Plateau and in mountainous areas, with the degree of change differing for each SRES scenario; LAI increases around the edge of the Tibetan Plateau and decreases in the lower reaches of the basin; and more conspicuous changes in river discharge in upstream areas than in the middle to lower reaches, mainly due to increases in precipitation in the plateau region. After the 2050s, the results suggested changes in river discharge will be slowed due to changes in evapotranspiration. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Modelling the hydrologic effects of dynamic land-use change using a distributed hydrologic model and a spatial land-use allocation model

HYDROLOGICAL PROCESSES, Issue 18 2010
Hone-Jay Chu
Abstract This study develops a novel approach for modelling and examining the impacts of time,space land-use changes on hydrological components. The approach uses an empirical land-use change allocation model (CLUE-s) and a distributed hydrological model (DHSVM) to examine various land-use change scenarios in the Wu-Tu watershed in northern Taiwan. The study also uses a generalized likelihood uncertainty estimation approach to quantify the parameter uncertainty of the distributed hydrological model. The results indicate that various land-use policies,such as no change, dynamic change and simultaneous change,have different levels of impact on simulating the spatial distributions of hydrological components in the watershed study. Peak flow rates under simultaneous and dynamic land-use changes are 5·71% and 2·77%, respectively, greater than the rate under the no land-use change scenario. Using dynamic land-use changes to assess the effect of land-use changes on hydrological components is more practical and feasible than using simultaneous land-use change and no land-use change scenarios. Furthermore, land-use change is a spatial dynamic process that can lead to significant changes in the distributions of ground water and soil moisture. The spatial distributions of land-use changes influence hydrological processes, such as the ground water level of whole areas, particularly in the downstream watershed. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Hydrometeorological controls and erosive response of an extreme alpine debris flow

HYDROLOGICAL PROCESSES, Issue 19 2009
Lorenzo Marchi
Abstract On 29 August, 2003, an intense convective storm system affected the Fella River basin, in the eastern Italian Alps, producing rainfall peaks of approximately 390 mm in 12 h. The storm triggered an unusually large debris flow in the ungauged Rio Cucco basin (0·65 km2), with a volume of approximately 78 000 m3. The analysis of the time evolution of the rainstorm over the basin has been based on rainfall estimates from radar observations and data recorded by a raingauge network. Detailed geomorphological field surveys, carried out both before and after the flood of August 2003, and the application of a distributed hydrological model have enabled assessment of flood response, estimation of erosion volumes and sediment supply to the channel network. The accounts of two eyewitnesses have provided useful elements for reconstructing the time evolution and the flow processes involved in the event. Liquid peak discharge estimates cluster around 20 m3 s,1 km,2, placing this event on the flood envelope curve for the eastern Italian Alps. The hydrological analysis has shown that the major controls of the flood response were the exceptional cumulated rainfall amount, required to exceed the large initial losses, and the large rainfall intensities at hourly temporal scales, required to generate high flood response at the considered basin scale. Observations on the deposits accumulated on the alluvial fan indicate that, although the dominant flow process was a debris flow, sheetflood also contributed to fan aggradation and fluvial reworking had an important role in winnowing debris-flow lobes and redistributing sediment on the fan surface. This points out to the large discharge values during the recession phase of the flood, implying an important role for subsurface flow on runoff generation of this extreme flash flood event. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Effects of spatial grid resolution on river flow and surface inundation simulation by physically based distributed modelling approach

HYDROLOGICAL PROCESSES, Issue 4 2009
Dushmanta Dutta
Abstract Grid-based distributed hydrological models are considered to be a very effective flood modelling tool for basin-wide flood risk analysis because of their capabilities of simulating river and surface inundations at high spatio-temporal resolutions by taking advantages of grid-based data from meteorological models, radar and satellite remote sensing. Selecting an appropriate grid size is critically important for any application of a grid-based model, which requires proper understanding of effects of grid sizes on simulated outcomes. The paper presents the outcomes of a study conducted to analyse the effects of grid resolution on simulated river peak flows and surface inundation in two selected river basins using a process-based distributed hydrological model. The outcomes show that grid resolution significantly affects the simulated river peak flows and surface inundation characteristics. In both cases, it has been found that the effects are mainly caused by changes of the topographic parameters as a result of changes of grid sizes. The reduction of average surface slope with the increase of grid size affects the simulated surface inundation extents and heights. There is a threshold resolution of digital elevation model (DEM) in the simulated flood inundation and beyond that the model outcomes become arbitrary. Averaged topographic values at coarse resolution beyond this threshold level do not represent any characteristics of locally elevated topographic features such as dykes, highways, etc. and their influence on flood inundation characteristics can be no more captured by the model. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Investigation of the Mekong River basin hydrology for 1980,2000 using the YHyM

HYDROLOGICAL PROCESSES, Issue 9 2008
Hapu Arachchige Prasantha Hapuarachchi
Abstract This study investigates the Mekong River basin hydrology for the 1980,2000 period using a grid-based distributed hydrological model called Yamanashi Hydrological Model (YHyM). The performance of the model is evaluated using data observed at different locations and the results justify the physical soundness of the model. The seasonal variations of climatic and hydrological characteristics of the basin such as soil moisture, ground water saturation deficit, runoff, precipitation, evapotranspiration, etc. are analysed. On the basis of the simulated results, it is noticeable that there is no significant trend in the precipitation, discharge, or soil moisture state of the basin during the simulated period, though there are some seasonal variations which seem to be natural. However the analysis on the precipitation elasticity (E) of the river flow shows that the E values for all sub-basins are greater than unity, which indicates that x% change in annual precipitation can cause > x% change in annual river flow. Further the basin hydrological responses are analysed for a long term synthetically-induced drought the results of which show the significance of the base flow of the Mekong River basin. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Use of multi-platform, multi-temporal remote-sensing data for calibration of a distributed hydrological model: an application in the Arno basin, Italy

HYDROLOGICAL PROCESSES, Issue 13 2006
Lorenzo Campo
Abstract Images from satellite platforms are a valid aid in order to obtain distributed information about hydrological surface states and parameters needed in calibration and validation of the water balance and flood forecasting. Remotely sensed data are easily available on large areas and with a frequency compatible with land cover changes. In this paper, remotely sensed images from different types of sensor have been utilized as a support to the calibration of the distributed hydrological model MOBIDIC, currently used in the experimental system of flood forecasting of the Arno River Basin Authority. Six radar images from ERS-2 synthetic aperture radar (SAR) sensors (three for summer 2002 and three for spring,summer 2003) have been utilized and a relationship between soil saturation indexes and backscatter coefficient from SAR images has been investigated. Analysis has been performed only on pixels with meagre or no vegetation cover, in order to legitimize the assumption that water content of the soil is the main variable that influences the backscatter coefficient. Such pixels have been obtained by considering vegetation indexes (NDVI) and land cover maps produced by optical sensors (Landsat-ETM). In order to calibrate the soil moisture model based on information provided by SAR images, an optimization algorithm has been utilized to minimize the regression error between saturation indexes from model and SAR data and error between measured and modelled discharge flows. Utilizing this procedure, model parameters that rule soil moisture fluxes have been calibrated, obtaining not only a good match with remotely sensed data, but also an enhancement of model performance in flow prediction with respect to a previous calibration with river discharge data only. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Performance analysis of different meteorological data and resolutions using MaScOD hydrological model

HYDROLOGICAL PROCESSES, Issue 16 2004
Roshan Shrestha
Abstract Distributed meteorological data collected from different sources are rarely identical within the same domain of space and time. Discrepancies of these data in magnitude, pattern, and resolution play an important role in hydrological simulation. Using four different sets of distributed meteorological data (from the HUBEX-Intense Observation Period and GAME experimental products at different resolutions), hydrological simulations are conducted through a distributed hydrological model called MaScOD (macro-scale OHyMoS assisted distributed) hydrological model. The model's performance is measured using 12 different indexes. Based on these indexes, a relative normalized score is calculated to evaluate the overall performance of the result from each data set. Three sub-basins of the Huaihe River basin in China, taking the cases at Bengbu (132 350 km2), Wangjiaba (29 844 km2) and Suiping (2093 km2), are used for numerical experiments. This study shows the competence of coarse-resolution meteorological data, the GAME reanalysis 1·25° data, to apply in hydrological simulations of large catchments. However, that data failed to simulate the hydrograph in smaller catchments. The results are significantly improved by including spatial variability at finer resolution in that data. Copyright © 2004 John Wiley & Sons, Ltd. [source]


A distributed approach for estimating catchment evapotranspiration: comparison of the combination equation and the complementary relationship approaches

HYDROLOGICAL PROCESSES, Issue 8 2003
Z. X. Xu
Abstract In large river basins, there may be considerable variations in both climate and land use across the region. The evapotranspiration that occurs over a basin may be drastically different from one part of the region to another. The potential influence of these variations in evapotranspiration estimated for the catchment is weakened by using a spatially based distributed hydrological model in such a study. Areal evapotranspiration is estimated by means of approaches requiring only meteorological data: the combination equation (CE) model and the complementary relationship approach,the complementary relationship areal evapotranspiration (CRAE) and advection,aridity (AA) models. The capability of three models to estimate the evapotranspiration of catchments with complex topography and land-use classification is investigated, and the models are applied to two catchments with different characteristics and scales for several representative years. Daily, monthly, and annual evapotranspiration are estimated with different accuracy. The result shows that the modified CE model may underestimate the evapotranspiration in some cases. The CRAE and AA models seem to be two kinds of effective alternatives for estimating catchment evapotranspiration. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Sensitivity of Stream flow and Water Table Depth to Potential Climatic Variability in a Coastal Forested Watershed,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2010
Zhaohua Dai
Dai, Zhaohua, Carl C. Trettin, Changsheng Li, Devendra M. Amatya, Ge Sun, and Harbin Li, 2010. Sensitivity of Streamflow and Water Table Depth to Potential Climatic Variability in a Coastal Forested Watershed. Journal of the American Water Resources Association (JAWRA) 1,13. DOI: 10.1111/j.1752-1688.2010.00474.x Abstract:, A physically based distributed hydrological model, MIKE SHE, was used to evaluate the effects of altered temperature and precipitation regimes on the streamflow and water table in a forested watershed on the southeastern Atlantic coastal plain. The model calibration and validation against both streamflow and water table depth showed that the MIKE SHE was applicable for predicting the streamflow and water table dynamics for this watershed with an acceptable model efficiency (E > 0.5 for daily streamflow and >0.75 for monthly streamflow). The simulation results from changing temperature and precipitation scenarios indicate that climate change influences both streamflow and water table in the forested watershed. Compared to current climate conditions, the annual average streamflow increased or decreased by 2.4% with one percentage increase or decrease in precipitation; a quadratic polynomial relationship between changes in water table depth (cm) and precipitation (%) was found. The annual average water table depth and annual average streamflow linearly decreased with an increase in temperature within the range of temperature change scenarios (0-6°C). The simulation results from the potential climate change scenarios indicate that future climate change will substantially impact the hydrological regime of upland and wetland forests on the coastal plain with corresponding implications to altered ecosystem functions that are dependent on water. [source]