Distinctive Traits (distinctive + trait)

Distribution by Scientific Domains


Selected Abstracts


P,T,t path of the Hercynian low-pressure rocks from the Mandatoriccio complex (Sila Massif, Calabria, Italy): new insights for crustal evolution

JOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2010
A. LANGONE
Abstract The tectono-metamorphic evolution of the Hercynian intermediate,upper crust outcropping in eastern Sila (Calabria, Italy) has been reconstructed, integrating microstructural analysis, P,T pseudosections, mineral isopleths and geochronological data. The studied rocks belong to a nearly complete crustal section that comprises granulite facies metamorphic rocks at the base and granitoids in the intermediate levels. Clockwise P,T paths have been constrained for metapelites of the basal level of the intermediate,upper crust (Umbriatico area). These rocks show noticeable porphyroblastic textures documenting the progressive change from medium- P metamorphic assemblages (garnet- and staurolite-bearing assemblages) towards low- P/high -T metamorphic assemblages (fibrolite- and cordierite-bearing assemblages). Peak-metamorphic conditions of ,590 °C and 0.35 GPa are estimated by integrating microstructural observations with P,T pseudosections calculated for bulk-rock and reaction-domain compositions. The top level of the intermediate,upper crust (Campana area) recorded only the major heating phase at low- P (,550 °C and 0.25 GPa), as documented by the static growth of biotite spots and of cordierite and andalusite porphyroblasts in metapelites. In situ U,Th,Pb dating of monazite from schists containing low -P/high -T metamorphic assemblages gave a weighted mean U,Pb concordia age of 299 ± 3 Ma, which has been interpreted as the timing of peak metamorphism. In the framework of the whole Hercynian crustal section the peak of low -P/high -T metamorphism in the intermediate-to-upper crust took place concurrently with granulite facies metamorphism in the lower crust and with emplacement of the granitoids in the intermediate levels. In addition, decompression is a distinctive trait of the P,T evolution both in the lower and upper crust. It is proposed that post,collisional extension, together with exhumation, is the most suitable tectonic setting in which magmatic and metamorphic processes can be active simultaneously in different levels of the continental crust. [source]


Proteome approaches combined with Fourier transform infrared spectroscopy revealed a distinctive biofilm physiology in Bordetella pertussis

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 23-24 2008
Diego Omar Serra
Abstract Proteome analysis was combined with whole-cell metabolic fingerprinting to gain insight into the physiology of mature biofilm in Bordetella pertussis, the agent responsible for whooping cough. Recent reports indicate that B. pertussis adopts a sessile biofilm as a strategy to persistently colonize the human host. However, since research in the past mainly focused on the planktonic lifestyle of B. pertussis, knowledge on biofilm formation of this important human pathogen is still limited. Comparative studies were carried out by combining 2-DE and Fourier transform infrared (FT-IR) spectroscopy with multivariate statistical methods. These complementary approaches demonstrated that biofilm development has a distinctive impact on B. pertussis physiology. Results from MALDI-TOF/MS identification of proteins together with results from FT-IR spectroscopy revealed the biosynthesis of a putative acidic-type polysaccharide polymer as the most distinctive trait of B. pertussis life in a biofilm. Additionally, expression of proteins known to be involved in cellular regulatory circuits, cell attachment and virulence was altered in sessile cells, which strongly suggests a significant impact of biofilm development on B. pertussis pathogenesis. In summary, our work showed that the combination of proteomics and FT-IR spectroscopy with multivariate statistical analysis provides a powerful tool to gain further insight into bacterial lifestyles. [source]


A new approach to prioritizing marine fish and shellfish populations for conservation

FISH AND FISHERIES, Issue 4 2001
Einar Eg Nielsen
Abstract There has been increasing awareness of the vulnerability of marine organisms to population extirpation and species extinction. While very few documented cases of species extinction exist in the marine environment, it is anticipated that managers will face the dilemma of prioritizing populations of marine fish and shellfish for protection in the near future. Current prioritization procedures have been developed from salmonid models with the intent of applying them to all marine organisms, and in some cases to freshwater and terrestrial taxa. In this review we provide evidence for the relevance of such a process for marine species and further suggest five broad categories of marine organisms that have distinctive traits influencing their genetic structure. The current prioritization models have been adapted to account for each of these species groups. Emphasis is placed on ,Classical Marine Species' which represent the opposite end of the continuum from the salmon model, displaying high within-population genetic variance. From this category, three cod (Gadus morhua) stocks were selected to evaluate a revised scheme developed specifically for ,Classical Marine Species' that includes performance measures such as (i) reduction in number of spawning populations; (ii) reduction of Ne : Nc (ratio of effective to census population size); (iii) changes in life-history traits; (iv) critical density for spawning success; and (v) patchy vs. continuous distribution pattern. When the salmonid scheme was applied, the cod examples were allocated low values, indicating that they were not under threat. However, when the revised scheme was applied, all three cod stocks were allocated high values, indicating that the revised scheme was more reflective of the particular life-history traits of this category of organisms. [source]


MORPHOLOGICAL REVERSION OF SPIRULINA (ARTHROSPIRA) PLATENSIS (CYANOPHYTA): FROM LINEAR TO HELICAL,

JOURNAL OF PHYCOLOGY, Issue 3 2005
Zhi Ping Wang
The cyanobacterium Spirulina Turpin is characterized by its regularly coiled trichomes. Under some conditions, its helical filaments can convert to abnormal morphologies, such as irregularly curved and even linear shapes, that had been considered as a permanent degeneration that could not be reversed. However, here we found that the linear filaments of Spirulina platensis Geitler could spontaneously revert to the helical form with the same morphology as the original filaments. Further studies showed that the ultrastructural, physiological, and biochemical characteristics of linear filaments were different from those of the original filaments, whereas they were the same for the reverted and the original filaments. The SDS-PAGE analysis revealed at least four proteins or subunits related to Spirulina morphogenesis: The 21.9-kDa and the 20.3-kDa proteins were highly expressed in the helical filaments, whereas the 52.0-kDa and the 31.8-kDa proteins were highly expressed in the linear filaments. The random amplified polymorphic DNA analysis with 96 random primers showed that the genetic background of the reverted filaments was the same as that of the original filaments but distinct from that of the linear filaments. The results indicated that linear filaments of Spirulina could revert to the original morphology under certain conditions, and their other distinctive traits were regained. [source]


A STUDY OF GLASS TESSERAE FROM MOSAICS IN THE MONASTERIES OF DAPHNI AND HOSIOS LOUKAS (GREECE)

ARCHAEOMETRY, Issue 5 2010
R. ARLETTI
In this work 51 glass mosaic tesserae from decorations of the two Greek monasteries of Daphni and Hosios Loukas were analysed by inductively coupled plasma optical emission spectroscopy, electron microprobe analysis and X-ray powder diffraction. On the basis of the chemical analyses, after discrimination between the tesserae of the original decorations and those from other periods, it was possible to outline the distinctive traits of Byzantine mosaic tesserae. In both the monasteries, the original mosaics were decorated with tesserae produced with plant ash based glass, either of the typical composition or a mixture with natron type glass. The samples from the Hosios Loukas decorations show a more homogeneous composition compared with those from Daphni. The major differences among the original samples are due to the presence of opacifiers and colourants. [source]


Mediational role of values in linking personality traits to political orientation

ASIAN JOURNAL OF SOCIAL PSYCHOLOGY, Issue 2 2009
Gianvittorio Caprara
Two studies use the Five Factor Model of traits and Schwartz's (1992) theory of basic personal values to assess the mediational role of values in linking traits to voting choice and left-right ideology. Both left- and right-wing voters showed distinctive traits and values that were congruent with their ideologies. Structural equation modelling supported a hypothesized full mediation model. Individuals' traits of openness, conscientiousness and agreeableness explained significant variance in the politically relevant values of security and universalism, and these self-reported values, in turn, explained the voters' political orientations. These findings held across age (adolescents and adults) and were corroborated using both cross-sectional and longitudinal data. [source]