Home About us Contact | |||
Distinct Habitats (distinct + habitat)
Terms modified by Distinct Habitats Selected AbstractsLocal and regional-scale responses of ant diversity to a semiarid biome transitionECOGRAPHY, Issue 4 2001Brandon T. Bestelmeyer The locations of biome transitions and ecotones are frequently defined by the rapid shift from one form of dominant vegetation to another. The composition of animal taxa is predicted to shift in parallel with that of dominant plants and species diversity is predicted to he greater in transitional zones than in adjacent areas. We asked whether ant species diversity and composition supported these predictions across a biome transition between shortgrass steppe and Chihuahuan desert vegetation. Neither species richness nor diversity was highest at the biome transition region as a whole, or within habitats in the biome transition. The biome transition region was not intermediate in ant species composition or in the representation of different faunal complexes. The community similarity between matched habitats shared between the biome transition zone and adjacent regions was less than that between distinct habitats occurring within regions. A zoogeographic transition for ants may occur to the north of the phytogeographic transition and may be coincident with the northern limits of monsoonal precipitation patterns. In contrast, the phytogeographic transition may be related to less extreme climatic variation within the monsoonal region occurring further south. [source] Life as an endodontic pathogenENDODONTIC TOPICS, Issue 1 2003Ecological differences between the untreated, root-filled root canals This review describes the type of microbial flora in the untreated root canal and the root-filled canal with persistent infection. Recent contributions of molecular methods of microbial identification are outlined along with a discussion of advantages and limitations of these methods. Ecological and environmental factors are the prime reasons for differences in the microbial flora in these distinct habitats. Shared phenotypic traits and an ability to respond to the modified environment select for the species that establish a persistent root canal infection. [source] Assemblages of soil macrofauna across a Scottish land-use intensification gradient: influences of habitat quality, heterogeneity and areaJOURNAL OF APPLIED ECOLOGY, Issue 6 2005PAUL EGGLETON Summary 1Land-use intensification strongly influences biodiversity by altering habitat heterogeneity, the distribution of habitat types and their extent. This study explores these effects within mixed semi-natural/agricultural mosaic habitats in Scotland, examining the effect of land-use intensification on the soil macrofauna at point (m2), landscape (km2) and regional (> 1 km2) scales. 2The soil macrofauna in six 1-km2 sampling areas (land-use units; LUU) were sampled using a combined hand-sorting and Winkler bag extraction technique. Within each LUU, 16 1-m2 samples were taken in each of 2 successive years. Each LUU had a mixture of land-use types, representing an agricultural intensification gradient. 3The following hypotheses were tested: (i) the study area sustains a number of distinct habitats as defined by soil macrofaunal composition; (ii) a greater number of restricted range species are found in semi-natural habitats; (iii) local (point) species density is related to habitat type; (iv) overall levels of species richness per habitat at regional scales are related to species-area effects; and (v) landscape-level species density is correlated with habitat heterogeneity. 4Initial analysis revealed five distinct habitat types: Caledonian forest (semi-natural pine forest), closed canopy woodland (pine plantation and broadleaved woodland), riparian habitats (wet woodland and grassland), pasture (improved grassland) and arable (crop fields). 5As hypothesized, the Caledonian habitat contained a greater number of restricted-range species than the other habitats. However, conifer plantations contained more restricted range species than expected, given their anthropogenic origin. Species density per m2 was most strongly affected by habitat type. At the regional level, the size of the species pool was correlated with the size of habitat areas. There were more species overall in LUU with greater habitat heterogeneity. 6Synthesis and applications. Caledonian pine forests have high species densities and contain species of conservation value. Mixed conifer plantations also appear to have a surprisingly high invertebrate conservation value. In contrast, intensively managed agricultural habitats have low species densities and conservation value. Generally, mixed land-use areas have higher species densities than single land-use areas. This emphasizes the need for careful management of forest systems within the matrix of agricultural habitats to maximize landscape diversity. [source] Changes in carabid beetle diversity within a fragmented agricultural landscapeAFRICAN JOURNAL OF ECOLOGY, Issue 1 2003C. N. Magagula Abstract The distribution of carabid and cicindelid (Coleoptera: Carabidae) beetles in five distinct habitats (riparian, mature orchard, pine windbreak, young orchard, natural veld), within Tambuti Citrus Estate (Swaziland) was examined by pitfall trapping over 18 months. Habitats with high vegetation and litter cover had the highest species diversity and larger specimens, e.g. riparian border and pine windbreak, while the lowest diversity was observed in intensively managed mature citrus orchards. While species such as Tefflus delagorguei Guérin occurred in all the habitats sampled, certain species illustrated habitat specificity; e.g. Dromica ambitiosa Péringuey was observed only in the pine windbreaks while Haplotrachelus sp. Chaudoir occurred mainly in the vegetated riparian and natural veld habitats. Four unidentified carabid beetles were exclusive to the riparian border habitat. This habitat was the only one with a distinct assemblage of species in the agricultural mosaic studied. Multivariate analyses were used to assess the role of soil and environmental variables in relation to the ground beetle diversity within the agricultural mosaic studied. Résumé La distribution des carabes et des cicindèles (Coléoptères: Carabidae) dans cinq habitats distincts (riverain, verger mature, coupe-vent de pins, jeune verger, prairie naturelle) dans le Tambuti Citrus Estate (Swaziland) a été examinée pendant 18 mois au moyen de pièges. Les habitats qui avaient la végétation la plus haute et une litière présentaient la plus forte diversité en espèces et les plus grands spécimens, c'est-à-dire l'habitat riverain et les coupe-vent de pins, tandis qu'on observait la plus faible diversité dans les vergers de citronniers intensément gérés. Alors que des espèces comme Tefflus delagorguei Guérin se retrouvaient dans tous les habitats étudiés, certaines espèces illustraient une certaine spécificité, par exemple Dromica ambitiosa Péringuey, qui n'a été observée que dans les coupe-vent de pins tandis que Haplotrachelus sp. Chaudoir se trouvait surtout dans les habitats riverains et les prairies naturelles. Cinq coléoptères carabidés non identifiés se trouvaient exclusivement dans l'habitat riverain. Cet habitat était le seul à avoir un assemblage d'espèces distinct dans la mosaïque agricole étudiée. Des analyses multivariées ont été utilisées pour évaluer le rôle du sol et des variables environnementales par rapport à la diversité des coléoptères dans le sol de la mosaïque agricole étudiée. [source] Testing for microevolution in body size in three blue tit populationsJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2004A. Charmantier Abstract Quantifying the genetic variation and selection acting on phenotypes is a prerequisite for understanding microevolutionary processes. Surprisingly, long-term comparisons across conspecific populations exposed to different environments are still lacking, hampering evolutionary studies of population differentiation in natural conditions. Here, we present analyses of additive genetic variation and selection using two body-size traits in three blue tit (Parus caeruleus) populations from distinct habitats. Chick tarsus length and body mass at fledging showed substantial levels of genetic variation in the three populations. Estimated heritabilities of body mass increased with habitat quality. The poorer habitats showed weak positive selection on tarsus length, and strong positive selection on body mass, but there was no significant selection on either trait in the good habitat. However, there was no evidence of any microevolutionary response to selection in any population during the study periods. Potential explanations for this absence of a response to selection are discussed, including the effects of spatial heterogeneity associated with gene flow between habitats. [source] Clonal genetic diversity and populational genetic differentiation in Phragmites australis distributed in the Songnen Prairie in northeast China as revealed by amplified fragment length polymorphism and sequence-specific amplification polymorphism molecular markersANNALS OF APPLIED BIOLOGY, Issue 1 2009M. Li Abstract Genetic variation within and between four naturally occurring Phragmites australis land populations, DBS, QG, SS1 and SS2 (named after locality), which colonise distinct habitats (different edaphic conditions) in the Songnen Prairie in northeast China, were investigated by amplified fragment length polymorphism (AFLP) and sequence-specific amplification polymorphism (S-SAP) markers. It was found that the selected primer combinations of both markers were highly efficient in revealing the inter-clonal genetic diversity and inter-populational genetic differentiation in P. australis from a molecular ecological perspective. Cluster analysis categorised the plants into distinct groups (DBS, QG and SS groups), which were in line with their localities, albeit the two SS group populations (SS1 and SS2) showed a lower degree of inter-populational differentiation. These results were strongly supported by multiple statistical analysis including Mantel's test, principal coordinate analysis, allocation test and analysis of molecular variance, which further suggested that gene flow, genetic drift and differences in as yet unidentified edaphic factors may all underpin the inter-clonal genetic diversity and inter-populational differentiation at the nucleotide sequence level. Analysis of intra-population clonal diversity also revealed that the QG population harboured a strikingly lower amount of within-population variation compared with those of the other three populations, presumably being caused by genetic drift and followed by physical and/or biological isolation. Homology analysis of a subset of population-specific or population-private AFLP and S-SAP bands suggested that regulatory genes and retroelements might play important roles in the ecological adaptation and differentiation of the P. australis populations. Possible causes for and implications of the extensive genetic variability in P. australis were discussed for its future genetic conservation and use in ecological revegetation. [source] Climatic signals in tree-rings of Araucaria angustifolia in the southern Brazilian highlandsAUSTRAL ECOLOGY, Issue 2 2010JULIANO MORALES OLIVEIRA Abstract Araucaria angustifolia (Bertol.) O. Kuntze (Araucariaceae) is a Neotropical tree, widely distributed in subtropical mountain rain forests and nearby natural grasslands of Southern Brazil. This species produces annual growth rings, but its dendroclimatic potential is barely known. In the present paper, the long-term growth patterns of A. angustifolia were investigated using annual growth ring time series and association to climate over the last century. Wood cores of A. angustifolia trees growing in forest and grassland habitats were obtained with an increment borer. The cores were surfaced, measured and cross-dated. The dated ring-width time series were standardized and submitted to correlation and principal component analysis to verify growth trends among sites and trees. Growth-climate relationships were investigated using correlation and regression analyses, comparing the ordination axes scores to regional time series of precipitation and temperature. Due to anatomical irregularities, mainly partial rings, only 35 out of 60 trees were cross-dated. The correlation and ordination analyses showed common tree-growth trends within and between sites, indicative of a regional environmental force determining inter-annual cambial activity variation. Despite growing in distinct habitats and disturbance regimes, A. angustifolia trees share a common long-term growth pattern, which is significantly related to thermal conditions during the current and previous growing seasons. Moreover, site-specific characteristics may have influenced opposite growth responses and association to climate conditions between forest and grassland trees. [source] Four sites with contrasting environmental stress in southeastern Brazil: relations of species, life form diversity, and geographic distribution to ecophysiological parametersBOTANICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2001F. R. SCARANO FLS Some ecophysiological parameters related to plant performance and fitness (carbon and nitrogen isotope composition and total C and N concentrations; in situ chlorophyll fluorescence measurements) were determined for over 30 species in four habitats bordering the montane Atlantic rain forest of Brazil, along a gradient of altitude and rainfall: a dry coastal forest, two areas of sandy coastal plain vegetation (restingas), and a high altitude campo. There was a considerable diversity of ecophysiological behaviour within and between the functional groups we created based on plant life-forms. For instance, both crassulacean acid metabolism (CAM) and C3 species were found in most life-forms sampled and throughout all habitats. Despite the variation in rainfall regimes, average overall water-use efficiency was similar between sites, particularly for C3 species, while no clear pattern regarding nitrogen-use emerged in this respect. Acute and chronic photoinhibition were found in many species across this gradient, even in CAM plants. However, on average, chronic photoinhibition and lower energy dissipation capacity were more characteristic of plants from the restinga habitats. This suggests that, although plants colonizing these habitats have evolved features to deal with water shortage, adaptation to high light levels has not been fully achieved yet. The ecophysiological performance of some individual species in distinct habitats and in distinct microhabitats within habitats is also discussed. [source] |