Distinct Functions (distinct + function)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Centrioles to basal bodies in the spermiogenesis of Mastotermes darwiniensis (Insecta, Isoptera)

CYTOSKELETON, Issue 5 2009
Maria Giovanna Riparbelli
Abstract In addition to their role in centrosome organization, the centrioles have another distinct function as basal bodies for the formation of cilia and flagella. Centriole duplication has been reported to require two alternate assembly pathways: template or de novo. Since spermiogenesis in the termite Mastotermes darwiniensis lead to the formation of multiflagellate sperm, this process represents a useful model system in which to follow basal body formation and flagella assembly. We present evidence of a possible de novo pathway for basal body formation in the differentiating germ cell. This cell also contains typical centrosomal proteins, such as centrosomin, pericentrin-like protein, ,-tubulin, that undergo redistribution as spermatid differentiation proceeds. The spermatid centrioles are long structures formed by nine doublet rather than triplet microtubules provided with short projections extending towards the surrounding cytoplasm and with links between doublets. The sperm basal bodies are aligned in parallel beneath the nucleus. They consist of long regions close to the nucleus showing nine doublets in a cartwheel array devoid of any projections; on the contrary, the short region close to the plasma membrane, where the sperm flagella emerge, is characterized by projections similar to those observed in the centrioles linking the basal body to the plasma membrane. It is hypothesized that this appearance is in connection with the centriole elongation and further with the flagellar axonemal organization. Microtubule doublets of sperm flagellar axonemes are provided with outer dynein arms, while inner arms are rarely visible. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source]


Visualization of stochastic Ca2+ signals in the formed somites during the early segmentation period in intact, normally developing zebrafish embryos

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 7 2009
Christina F. Leung
Localized Ca2+ signals were consistently visualized in the formed somites of intact zebrafish embryos during the early segmentation period. Unlike the regular process of somitogenesis, these signals were stochastic in nature with respect to time and location. They did, however, occur predominantly at the medial and lateral boundaries within the formed somites. Embryos were treated with modulators of [Ca2+]i to explore the signal generation mechanism and possible developmental function of the stochastic transients. Blocking elements in the phosphoinositol pathway eliminated the stochastic signals but had no obvious effect, stochastic or otherwise, on the formed somites. Such treatments did, however, result in the subsequently formed somites being longer in the mediolateral dimension. Targeted uncaging of buffer (diazo-2) or Ca2+ (NP-ethyleneglycoltetraacetic acid [EGTA]) in the presomitic mesoderm, resulted in a regular mediolateral lengthening and shortening, respectively, of subsequently formed somites. These data suggest a requirement for IP3 receptor-mediated Ca2+ release during convergence cell movements in the presomitic mesoderm, which appears to have a distinct function from that of the IP3 receptor-mediated stochastic Ca2+ signaling in the formed somites. [source]


Implementing a CMC tutor group for an existing distance education course

JOURNAL OF COMPUTER ASSISTED LEARNING, Issue 3 2000
M Weller
Abstract, ,Artificial Intelligence for Technology' (T396) is a distance learning course provided by the Open University of the UK using face-to-face tutorials. In 1997 a pilot study was undertaken of a computer-mediated communication (CMC) tutor group which consisted of volunteers from around the UK. The student feedback raised a number of issues including: the need for a distinct function for the tutor group conference, the role of and demands on the tutor, and the benefits perceived by students. It is suggested that some issues arise from a conflict of cultures each with their own implicit assumptions. The traditional face-to-face tutorial model is sometimes at variance with the demands of the new CMC based tuition. [source]


Characterization of Vorticella convallaria calcium-binding centrin proteins

THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 2 2005
KATARZYNA KONIOR
The stalked ciliate, Vorticella convallaria, is a good model system to study mechanochemical motility because its contractile organelles (spasmoneme and myonemes) use a mode of contraction that differs from most other eukaryotic motile systems. Since calcium triggers this contraction, we have undertaken the molecular characterization of the calcium-binding proteins associated with these organelles. We have isolated and identified seven unique centrin-like cDNAs from V. convallaria. Each encodes an acidic protein of approximately 20-kDa, containing a unique N-terminus and four potential calcium-binding domains. We predict that each centrin has a distinct function within the cell. To define these functions, we have initiated immunofluorescence localization studies utilizing various anti-centrin antibodies. Western analysis indicates that each antibody recognizes a distinct protein or subset of proteins in Vorticella. Using these antibodies, we have localized centrin to various structures within the cell; myonemes, spasmoneme, and the oral apparatus. Because each of these antibodies recognizes a different protein on Westerern analysis, we conclude that a number of calcium-binding proteins are associated with the contractile organelles. To further characterize this gene family, we have initiated immunolocalization at the ultrastructural level. This will permit subcellular localization of all Vorticella centrins and enable us to dissect the function of this multi-gene family. [source]


The role of pdx1 and HNF6 in proliferation and differentiation of endocrine precursors

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 2 2004
Laura Wilding
Abstract Ex vivo expansion of embryonic stem cells (ES cells) or pancreatic stem cells for insulin delivery to diabetic patients provides potential for the restoration of islet function in these individuals. Understanding the spatial and temporal requirements of crucial factors for endocrine progenitor specification, proliferation, and terminal differentiation remains a major challenge in the field of pancreas development. Here, we provide speculation as to the role of pdx1 and HNF6 in these different stages of pancreatic endocrine cell development. At the time when islets begin to form within the pancreas, the expression patterns of pdx1 and HNF6 diverge, suggesting distinct functions for each of the genes over the course of endocrine cell development. The current body of evidence provides support for a role of both factors in early endocrine specification as well as a requirement for pdx1 in the generation of mature pancreatic endocrine cells. The precise temporal requirement of HNF6 in the production of terminally differentiated endocrine cells remains unclear. Future studies in this area will rely on conditionally manipulatable systems in combination with lineage-tracing studies for a more accurate assessment of pdx1 and HNF6 function at different stages along the pathway of endocrine cell development. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Emerging topics in Reelin function

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2010
Eckart Förster
Abstract Reelin signalling in the early developing cortex regulates radial migration of cortical neurons. Later in development, Reelin promotes maturation of dendrites and dendritic spines. Finally, in the mature brain, it is involved in modulating synaptic function. In recent years, efforts to identify downstream signalling events induced by binding of Reelin to lipoprotein receptors led to the characterization of novel components of the Reelin signalling cascade. In the present review, we first address distinct functions of the Reelin receptors Apoer2 and Vldlr in cortical layer formation, followed by a discussion on the recently identified downstream effector molecule n-cofilin, involved in regulating actin cytoskeletal dynamics required for coordinated neuronal migration. Next, we discuss possible functions of the recently identified Reelin,Notch signalling crosstalk, and new aspects of the role of Reelin in the formation of the dentate radial glial scaffold. Finally, progress in characterizing the function of Reelin in modulating synaptic function in the adult brain is summarized. The present review has been inspired by a session entitled ,Functions of Reelin in the developing and adult hippocampus', held at the Spring Hippocampal Research Conference in Verona/Italy, June 2009. [source]


Dynamic links between theta executive functions and alpha storage buffers in auditory and visual working memory

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2010
Masahiro Kawasaki
Abstract Working memory (WM) tasks require not only distinct functions such as a storage buffer and central executive functions, but also coordination among these functions. Neuroimaging studies have revealed the contributions of different brain regions to different functional roles in WM tasks; however, little is known about the neural mechanism governing their coordination. Electroencephalographic (EEG) rhythms, especially theta and alpha, are known to appear over distributed brain regions during WM tasks, but the rhythms associated with task-relevant regional coupling have not been obtained thus far. In this study, we conducted time,frequency analyses for EEG data in WM tasks that include manipulation periods and memory storage buffer periods. We used both auditory WM tasks and visual WM tasks. The results successfully demonstrated function-specific EEG activities. The frontal theta amplitudes increased during the manipulation periods of both tasks. The alpha amplitudes increased during not only the manipulation but also the maintenance periods in the temporal area for the auditory WM and the parietal area for the visual WM. The phase synchronization analyses indicated that, under the relevant task conditions, the temporal and parietal regions show enhanced phase synchronization in the theta bands with the frontal region, whereas phase synchronization between theta and alpha is significantly enhanced only within the individual areas. Our results suggest that WM task-relevant brain regions are coordinated by distant theta synchronization for central executive functions, by local alpha synchronization for the memory storage buffer, and by theta,alpha coupling for inter-functional integration. [source]


Calpain cleavage of collapsin response mediator proteins in ischemic mouse brain

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2007
Susan X. Jiang
Abstract Collapsin response mediator proteins (CRMPs) are important brain-specific proteins with distinct functions in modulating growth cone collapse and axonal guidance during brain development. Our previous studies have shown that calpain cleaves CRMP3 in the adult mouse brain during cerebral ischemia [S.T. Hou et al. (2006) J. Neurosci., 26, 2241,2249]. Here, the expression of all CRMP family members (1,5) was examined in mouse brains that were subjected to middle cerebral artery occlusion. Among the five CRMPs, the expressions of CRMP1, CRMP3 and CRMP5 were the most abundant in the cerebral cortex and all CRMPs were targeted for cleavage by ischemia-activated calpain. Sub-cellular fractionation analysis showed that cleavage of CRMPs by calpain occurred not only in the cytoplasm but also in the synaptosomes isolated from ischemic brains. Moreover, synaptosomal CRMPs appeared to be at least one-fold more sensitive to cleavage compared with those isolated from the cytosolic fraction in an in-vitro experiment, suggesting that synaptosomal CRMPs are critical targets during cerebral ischemia-induced neuronal injury. Finally, the expression of all CRMPs was colocalized with TUNEL-positive neurons in the ischemic mouse brain, which further supports the notion that CRMPs may play an important role in neuronal death following cerebral ischemia. Collectively, these studies demonstrated that CRMPs are targets of calpains during cerebral ischemia and they also highlighted an important potential role that CRMPs may play in modulating ischemic neuronal death. [source]


Cysteine-string protein in inner hair cells of the organ of Corti: synaptic expression and upregulation at the onset of hearing

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2002
Michel Eybalin
Abstract Cysteine-string protein is a vesicle-associated protein that plays a vital function in neurotransmitter release. We have studied its expression and regulation during cochlear maturation. Both the mRNA and the protein were found in primary auditory neurons and the sensory inner hair cells. More importantly, cysteine-string protein was localized on synaptic vesicles associated with the synaptic ribbon in inner hair cells and with presynaptic differentiations in lateral and medial olivocochlear terminals , the cell bodies of which lie in the auditory brainstem. No cysteine-string protein was expressed by the sensory outer hair cells suggesting that the distinct functions of the two cochlear hair cell types imply different mechanisms of neurotransmitter release. In developmental studies in the rat, we observed that cysteine-string protein was present beneath the inner hair cells at birth and beneath outer hair cells by postnatal day 2 only. We found no expression in the inner hair cells before about postnatal day 12, which corresponds to the period during which the first cochlear action potentials could be recorded. In conclusion, the close association of cysteine-string protein with synaptic vesicles tethered to synaptic ribbons in inner hair cells and its synchronized expression with the appearance and maturation of the cochlear potentials strongly suggest that this protein plays a fundamental role in sound-evoked glutamate release by inner hair cells. This also suggests that this role may be common to ribbon synapses and conventional central nervous system synapses. [source]


The fabp4 gene of zebrafish (Danio rerio) , genomic homology with the mammalian FABP4 and divergence from the zebrafish fabp3 in developmental expression

FEBS JOURNAL, Issue 6 2007
Rong-Zong Liu
Teleost fishes differ from mammals in their fat deposition and distribution. The gene for adipocyte-type fatty acid-binding protein (A-FABP or FABP4) has not been identified thus far in fishes. We have determined the cDNA sequence and defined the structure of a fatty acid-binding protein gene (designated fabp4) from the zebrafish genome. The polypeptide sequence encoded by zebrafish fabp4 showed highest identity to the Had -FABP or H6-FABP from Antarctic fishes and the putative orthologs from other teleost fishes (83,88%). Phylogenetic analysis clustered the zebrafish FABP4 with all Antarctic fish H6-FABPs and putative FABP4s from other fishes in a single clade, and then with the mammalian FABP4s in an extended clade. Zebrafish fabp4 was assigned to linkage group 19 at a distinct locus from fabp3. A number of closely linked syntenic genes surrounding the zebrafish fabp4 locus were found to be conserved with human FABP4. The zebrafish fabp4 transcripts showed sequential distribution in the developing eye, diencephalon and brain vascular system, from the middle somitogenesis stage to 48 h postfertilization, whereas fabp3 mRNA was located widely in the embryonic and/or larval central nervous system, retina, myotomes, pancreas and liver from middle somitogenesis to 5 days postfertilization. Differentiation in developmental regulation of zebrafish fabp4 and fabp3 gene transcription suggests distinct functions for these two paralogous genes in vertebrate development. [source]


Hydrologic versus geomorphic limitation on CPOM storage in stream ecosystems

FRESHWATER BIOLOGY, Issue 8 2008
MELANIE J. SMALL
Summary 1. Stream ecosystems are the products of interactions between hydrology, geomorphology and ecology, but examining all three components simultaneously is difficult and rarely attempted. Frequently, either geomorphology or hydrology is treated as invariable or static. 2. To examine the validity of treating either hydrology or geomorphology as static, we studied the individual and combined effects of hydrology and channel geomorphology on coarse particulate organic matter (CPOM) storage. Using data from an experimental leaf release in a hydrologically regulated stream we created a simple numerical model. This allowed us to quantify the relative influence of CPOM trapping and CPOM retention on total long-term CPOM storage under variable regimes of flood frequency and geomorphic structure. 3. CPOM storage is a function of supply, flood frequency and the type and frequency of in-stream structures. In-stream structures perform two distinct functions, trapping and retention, whose relative importance in leaf storage changes with stream hydrology. Trapping is more important for CPOM storage in streams with few floods, while retention is more important in streams with frequent floods. Different structures (e.g. boulders, large wood, small wood) perform these functions at different efficiencies. We found that large wood trapped two to three times more leaves than the bank, but that the bank retained leaves two to three times more efficiently. 4. A modelled channel with five times the amount of large wood as the study channel (a ,wood restoration') initially stored 14% more leaves than the modelled ,natural' channel. After six floods, however, the modelled wood restoration channel stored 50% less CPOM than the natural channel as the large wood had high trapping but poor retention. The modelled natural channel contained structures that could both trap and retain. Thus, as different structures performed different functions, the structural complexity buffered the stream allochthonous energy base against changes in hydrology through its balance of trapping and retention. 5. As the frequency of floods increased, the spatial distribution of CPOM became increasingly patchy as storage was driven entirely by structures with high retention. Thus, the coupling of flood frequency and geomorphic structure influenced CPOM availability, which in turn has ramifications for the entire stream food web. [source]


Modulation of Alp4 function in Schizosaccharomyces pombe induces novel phenotypes that imply distinct functions for nuclear and cytoplasmic ,-tubulin complexes

GENES TO CELLS, Issue 4 2006
Hirohisa Masuda
The ,-tubulin complex acts as a nucleation unit for microtubule assembly. It remains unknown, however, how spatial and temporal regulation of the complex activity affects microtubule-mediated cellular processes. Alp4 is one of the essential components of the S. pombe,-tubulin complex. We show here that overproduction of a carboxy-terminal form of Alp4 (Alp4C) and its derivatives tagged to a nuclear localization signal or to a nuclear export signal affect localization of ,-tubulin complexes and induces novel phenotypes that reflect distinct functions of nuclear and cytoplasmic ,-tubulin complexes. Nuclear Alp4C induces a Wee1-dependent G2 delay, reduces the levels of the ,-tubulin complex at the spindle pole body, and results in defects in mitotic progression including spindle assembly, cytoplasmic microtubule disassembly, and chromosome segregation. In contrast, cytoplasmic Alp4C induces oscillatory nuclear movement and affects levels of cell polarity markers, Bud6 and Tip1, at the cell ends. These results demonstrate that regulation of nuclear ,-tubulin complex activity is essential for cell cycle progression through the G2/M boundary and M phase, whereas regulation of cytoplasmic ,-tubulin complex activity is important for nuclear positioning and cell polarity control during interphase. [source]


New hemocyte-specific enhancer-reporter transgenes for the analysis of hematopoiesis in Drosophila

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 11 2009
Tsuyoshi Tokusumi
Abstract Based on environmental challenges or altered genetic composition, Drosophila larvae can produce up to three types of blood cells that express genetic programs essential for their distinct functions. Using transcriptional enhancers for genes expressed exclusively in plasmatocytes, crystal cells, or lamellocytes, several new hemocyte-specific enhancer-reporter transgenes were generated to facilitate the analysis of Drosophila hematopoiesis. This approach took advantage of fluorescent variants of insulated P-element reporter vectors for multilabeling cell analyses; two additional color variants were generated in these studies. These vectors were successfully used to produce transgenic fly lines that label specific hemocyte lineages with separate colors. Combining three transgene reporters allowed for the unambiguous identification of plasmatocytes, crystal cells, and lamellocytes within a complex hemocyte population. While this work focused on the hematopoietic process, these new vectors can be used to mark multiple cell types or trace complex cell lineages during any chosen aspect of Drosophila development. genesis 47:771,774, 2009. © 2009 Wiley-Liss, Inc. [source]


High-resolution multi-voxel pattern analysis of category selectivity in the medial temporal lobes

HIPPOCAMPUS, Issue 6 2008
Rachel A. Diana
Abstract Although the parahippocampal cortex (PHc) is known to be critical for memory formation, little is known about what is encoded by this area. Using multi-voxel pattern analysis of high-resolution functional magnetic resonance imaging (MRI) data, we examined responses to blocks of categorically coherent stimuli and found that patterns of activity in PHc were selective for not only scenes, but also for other nonspatial object categories (e.g., faces and toys). This pattern of results was also found in the parahippocampal place area (PPA), indicating that this region is not sensitive exclusively to scenes. In contrast, neither the hippocampus nor perirhinal cortex (PRc) were found to be selective for category information. The results indicate that regions within the medial temporal lobe may support distinct functions, and that the PHc appears to be particularly sensitive to category-level information. © 2008 Wiley-Liss, Inc. [source]


Genetic polymorphisms of chitotriosidase in Caucasian children with bronchial asthma

INTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 3 2006
S. Bierbaum
Summary In humans, two types of chitinases have been identified: chitotriosidase I (CHIT1) and acid mammalian chitinase (AMCase). They are enzymes that cleave chitin, a polysaccharide contained in many different human parasites. So far, only little is known about their function in human and especially in human diseases. Recently we have described association of polymorphisms of AMCase with bronchial asthma in a pediatric population. In this study we were interested in whether CHIT1 is also involved in the genetics of asthma. The amino acid variants Gly102Ser and Ala442Gly, as well as a 24 bp duplication within CHIT1, were typed by means of restriction fragment length polymorphisms on 322 children with asthma and 270 randomly chosen adult controls. Statistical analyses made use of the Armitage's trend test; haplotypes were calculated by famhap and fastehplus. The amino acid variants showed no association with bronchial asthma. The 24 bp duplication, previously shown to completely demolish CHIT1 activity, was also evenly distributed between asthmatics and controls. Finally, the haplotype showed no association with the disease. We conclude from our results that CHIT1 does not play a major role in the development of bronchial asthma in Caucasian children. The results might also imply that the two human chitinases that have been identified so far have quite distinct functions in human diseases even though they have the same substrate. [source]


Underground Vetch (Vicia sativa ssp. amphicarpa): A Potential Pasture and Forage Legume for Dry Areas in West Asia

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 3 2003
A. M. Abd El Moneim
Abstract Subterranean vetch [Vicia sativa ssp. amphicarpa (Dorth.) Aschers & Graebn.] is native to disturbed grasslands of the Mediterranean basin where heavy grazing, seasonal drought and erosion act as strong selection forces. It produces two pod types, above-ground and 5 cm below the soil surface. Unlike subterranean clover (Trifolium subterranean L.), which buries its seeds after flowering above-ground, subterranean vetch flowers and forms pods beneath the soil surface on underground stems. The aerial pods are produced after vegetative development ceases, while the underground pods are produced in ontogeny. The ability of this unusual vetch to survive in marginal areas with low rainfall (about 250 mm year,1) and to produce nutritious herbage and pods is an important characteristic which helps address rehabilitation of degraded rangelands and increase feed production for small ruminants. Research at the International Center for Agricultural Research in the Dry Areas (ICARDA) during the 1988,93 growing seasons has assessed the herbage and seed productivity of underground vetch, its ability to grow in rotation with barley in marginal low-rainfall areas, and its capacity to regenerate after heavy grazing. Drier conditions in 1989 favoured earlier underground flowering; the number of underground pods was higher than that of aerial pods. Grain yield of barley (var. Atlas) was around 2.0 t ha,1 after underground vetch and only 1.2 t ha,1 after barley. Grazing underground vetch had no effect on the productivity of the succeeding barley crop. The aerial and underground pods serve two distinct functions; aerial pods increase dissemination within suitable habitats, while underground pods increase the probability of plant survival under adverse conditions such as drought and heavy grazing. Underground vetch has two potential uses, namely the rehabilitation of marginal areas and production in rotation with barley. [source]


Non-muscle myosin IIB helps mediate TNF cell death signaling independent of actomyosin contractility (AMC)

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2010
Patrick G. Flynn
Abstract Non-muscle myosin II (NM II) helps mediate survival and apoptosis in response to TNF-alpha (TNF), however, NM II's mechanism of action in these processes is not fully understood. NM II isoforms are involved in a variety of cellular processes and differences in their enzyme kinetics, localization, and activation allow NM II isoforms to have distinct functions within the same cell. The present study focused on isoform specific functions of NM IIA and IIB in mediating TNF induced apoptosis. Results show that siRNA knockdown of NM IIB, but not NM IIA, impaired caspase cleavage and nuclear condensation in response to TNF. NM II's function in promoting cell death signaling appears to be independent of actomyosin contractility (AMC) since treatment of cells with blebbistatin or cytochalasin D failed to inhibit TNF induced caspase cleavage. Immunoprecipitation studies revealed associations of NM IIB with clathrin, FADD, and caspase 8 in response to TNF suggesting a role for NM IIB in TNFR1 endocytosis and the formation of the death inducing signaling complex (DISC). These findings suggest that NM IIB promotes TNF cell death signaling in a manner independent of its force generating property. J. Cell. Biochem. 9999: 1365,1375, 2010. © 2010 Wiley-Liss, Inc. [source]


WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair

AGING CELL, Issue 4 2003
Lishan Chen
Summary Werner syndrome (WS) predisposes patients to cancer and premature aging, owing to mutations in WRN. The WRN protein is a RECQ-like helicase and is thought to participate in DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) or homologous recombination (HR). It has been previously shown that non-homologous DNA ends develop extensive deletions during repair in WS cells, and that this WS phenotype was complemented by wild-type (wt) WRN. WRN possesses both 3, , 5, exonuclease and 3, , 5, helicase activities. To determine the relative contributions of each of these distinct enzymatic activities to DSB repair, we examined NHEJ and HR in WS cells (WRN,/,) complemented with either wtWRN, exonuclease-defective WRN (E,), helicase-defective WRN (H,) or exonuclease/helicase-defective WRN (E,H,). The single E, and H, mutants each partially complemented the NHEJ abnormality of WRN,/, cells. Strikingly, the E,H, double mutant complemented the WS deficiency nearly as efficiently as did wtWRN. Similarly, the double mutant complemented the moderate HR deficiency of WS cells nearly as well as did wtWRN, whereas the E, and H, single mutants increased HR to levels higher than those restored by either E,H, or wtWRN. These results suggest that balanced exonuclease and helicase activities of WRN are required for optimal HR. Moreover, WRN appears to play a structural role, independent of its enzymatic activities, in optimizing HR and efficient NHEJ repair. Another human RECQ helicase, BLM, suppressed HR but had little or no effect on NHEJ, suggesting that mammalian RECQ helicases have distinct functions that can finely regulate recombination events. [source]


Caspases and apoptosis in fish

JOURNAL OF FISH BIOLOGY, Issue 2007
H. Takle
Apoptosis has a vital impact on the development and homeostasis of all multicellular organisms. Hence, all metazoan species seem to possess the necessary components of the apoptotic machinery, but in general, their numbers and complexity have increased during evolution. The key apoptotic factors are a cascade of cysteine proteases known as caspases. The fish homologous of almost all the mammalian caspases have also been identified, but several fish-specific caspases with putative distinct functions have also been reported. Despite these differences, the extrinsic and intrinsic pathways have been remarkably well conserved throughout 500 million years of vertebrate evolution. Here, the authors review what is currently known about fish caspases and apoptosis and demonstrate the huge amount of sequence information available from a range of fish species by screening Atlantic salmon genome databases for apoptotic homologous. [source]


Synaptic localization of neuroligin 2 in the rodent retina: Comparative study with the dystroglycan-containing complex

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2010
Leona Lui
Abstract Several recent studies have shown that neuroligin 2 (NL2), a component of the cell adhesion neurexins,neuroligins complex, is localized postsynaptically at hippocampal and other inhibitory synapses throughout the brain. Other studies have shown that components of the dystroglycan complex are also localized at a subset of inhibitory synapses and are coexpressed with NL2 in brain. These data prompted us to undertake a comparative study between the localization of NL2 and the dystroglycan complex in the rodent retina. First, we determined that NL2 mRNA is expressed both in the inner and in the outer nuclear layers. Second, we found that NL2 is localized both in the inner and in the outer synaptic plexiform layers. In the latter, the horseshoe-shaped pattern of NL2 and its extensive colocalization with RIM2, a component of the presynaptic active zone at ribbon synapses, argue that NL2 is localized presynaptically at photoreceptor terminals. Third, comparison of NL2 and the dystroglycan complex distribution patterns reveals that, despite their coexpression in the outer plexiform layer, they are spatially segregated within distinct domains of the photoreceptor terminals, where NL2 is selectively associated with the active zone and the dystroglycan complex is distally distributed in the lateral regions. Finally, we report that the dystroglycan deficiency in the mdx3cv mouse does not alter NL2 localization in the outer plexiform layer. These data show that the NL2- and dystroglycan-containing complexes are differentially localized in the presynaptic photoreceptor terminals and suggest that they may serve distinct functions in retina. © 2009 Wiley-Liss, Inc. [source]


Delayed neuropsychologic dysfunction after liver transplantation for acute liver failure: A matched, case-controlled study

LIVER TRANSPLANTATION, Issue 10 2002
Elizabeth W. Jackson
Although several studies have identified posttransplant neurologic sequelae in patients with acute liver failure (ALF), the effects of these sequelae on neuropsychologic functioning after transplant is unknown. This study compared neuropsychologic functioning of ALF patients with chronic liver disease patients after liver transplantation. After liver transplantation, seven ALF patients were compared with a matched control group of patients who had been transplanted for chronic liver disease. The patients were matched by gender, age (within 5 years), and time since transplantation (within 2 years). Patients completed a 2-hour battery of tests, which included measures of attention, memory, motor performance, abstract conceptualization, and visuospatial perception. There were no significant differences between the groups on measures of socioeconomic status or education. Significant differences were found on three separate tests: WAIS-III Vocabulary, WAIS-III Similarities, and WMS-III Paired Associate Learning II. Although these tests measure distinct functions (vocabulary knowledge, abstract conceptualization, and delayed verbal recall), they may be influenced by broader verbal functions, such as verbal fluency, conceptualization, and the ability to articulate ideas. When patients were asked what functions had noticeably deteriorated since transplantation, nearly all complained of memory difficulties, and there was no difference between groups. However, more ALF than chronic liver disease (CLD) patients complained of concentration difficulties. The results of this study suggest that ALF patients may experience more neuropsychologic dysfunction after transplant. Further studies are required to expand on these initial observations with the potential to improve patient care and referral to appropriate rehabilitative services. [source]


Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell,cell and cell,substrate adherence of S. cerevisiae S288c

MOLECULAR MICROBIOLOGY, Issue 5 2007
Lars Fichtner
Summary Cell,cell and cell,surface adherence represents initial steps in forming multicellular aggregates or in establishing cell,surface interactions. The commonly used Saccharomyces cerevisiae laboratory strain S288c carries a flo8 mutation, and is only able to express the flocculin-encoding genes FLO1 and FLO11, when FLO8 is restored. We show here that the two flocculin genes exhibit differences in regulation to execute distinct functions under various environmental conditions. In contrast to the laboratory strain ,1278b, haploids of the S288c genetic background require FLO1 for cell,cell and cell,substrate adhesion, whereas FLO11 is required for pseudohyphae formation of diploids. In contrast to FLO11, FLO1 repression requires the Sin4p mediator tail component, but is independent of the repressor Sfl1p. FLO1 regulation also differs from FLO11, because it requires neither the KSS1 MAP kinase cascade nor the pathways which lead to the transcription factors Gcn4p or Msn1p. The protein kinase A pathway and the transcription factors Flo8p and Mss11p are the major regulators for FLO1 expression. Therefore, S. cerevisiae is prepared to simultaneously express two genes of its otherwise silenced FLO reservoir resulting in an appropriate cellular surface for different environments. [source]


Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper

NEW PHYTOLOGIST, Issue 2 2003
Woei-Jiun Guo
Summary ,Expression and regulation of Arabidopsis metallothionein (MT) genes were investigated to examine the functions of MTs in plants. ,To examine the tissue-specific expression of MT genes, GUS reporter gene activity driven by promoters of MT1a, MT2a, MT2b and MT3 was analysed in transgenic plants. ,MT1a and MT2b are expressed in the phloem of all organs and are copper (Cu)-inducible; MT2a and MT3, by contrast, are expressed predominantly in mesophyll cells and are also induced by Cu in young leaves and at root tips. Expression of MT genes is highly induced by Cu in trichomes and increases during senescence. Expression of MT4 genes is restricted to seeds. ,We propose that plant MTs have distinct functions in heavy metal homeostasis, especially for Cu: MT1a and MT2b are involved in the distribution of Cu via the phloem, while MT2a and MT3 chaperone excess metals in mesophyll cells and root tips. These functional capabilities may allow MTs to play a role in mobilization of metal ions from senescing leaves and the sequestration of excess metal ions in trichomes. [source]


Localization of arginine decarboxylase in tobacco plants

PHYSIOLOGIA PLANTARUM, Issue 1 2004
Cristina Bortolotti
The lack of knowledge about the tissue and subcellular distribution of polyamines (PAs) and the enzymes involved in their metabolism remains one of the main obstacles in our understanding of the biological role of PAs in plants. Arginine decarboxylase (ADC; EC 4.1.1.9) is a key enzyme in polyamine biosynthesis in plants. We have characterized a cDNA coding for ADC from Nicotiana tabacum L. cv. Petit Havana SR1. The deduced ADC polypeptide had 721 amino acids and a molecular mass of 77 kDa. The ADC cDNA was overexpressed in Escherichia coli, and the ADC fusion protein obtained was used to produce polyclonal antibodies. Using immunological methods, we demonstrate the presence of the ADC protein in all plant organs analysed: flowers, seeds, stems, leaves and roots. Moreover, depending on the tissue, the protein is localized in two different subcellular compartments, the nucleus and the chloroplast. In photosynthetic tissues, ADC is located mainly in chloroplasts, whereas in non-photosynthetic tissues the protein appears to be located in nuclei. The different compartmentation of ADC may be related to distinct functions of the protein in different cell types. [source]


Gibberellin Biosynthesis and the Regulation of Plant Development

PLANT BIOLOGY, Issue 3 2006
M. J. Pimenta Lange
Abstract: Gibberellins (GAs) form a large family of plant growth substances with distinct functions during the whole life cycle of higher plants. The rate of GA biosynthesis and catabolism determines how the GA hormone pool occurs in plants in a tissue and developmentally regulated manner. With the availability of genes coding for GA biosynthetic enzymes, our understanding has improved dramatically of how GA plant hormones regulate and integrate a wide range of growth and developmental processes. This review focuses on two plant systems, pumpkin and Arabidopsis, which have added significantly to our understanding of GA biosynthesis and its regulation. In addition, we present models for regulation of GA biosynthesis in transgenic plants, and discuss their suitability for altering plant growth and development. [source]


Phytochromes A1 and B1 have distinct functions in the photoperiodic control of flowering in the obligate long-day plant Nicotiana sylvestris

PLANT CELL & ENVIRONMENT, Issue 9 2006
ZHI-LIANG ZHENG
ABSTRACT The obligate long-day plant Nicotiana sylvestris with a nominal critical day length of 12 h was used to dissect the roles of two major phytochromes (phyA1 and phyB1) in the photoperiodic control of flowering using transgenic plants under-expressing PHYA1 (SUA2), over-expressing PHYB1 (SOB36), or cosuppressing the PHYB1 gene (SCB35). When tungsten filament lamps were used to extend an 8 h main photoperiod, SCB35 and SOB36 flowered earlier and later, respectively, than wild-type plants, while flowering was greatly delayed in SUA2. These results are consistent with those obtained with other long-day plants in that phyB has a negative role in the control of flowering, while phyA is required for sensing day-length extensions. However, evidence was obtained for a positive role for PHYB1 in the control of flowering. Firstly, transgenic plants under-expressing both PHYA1 and PHYB1 exhibited extreme insensitivity to day-length extensions. Secondly, flowering in SCB35 was completely repressed under 8 h extensions with far-red-deficient light from fluorescent lamps. This indicates that the dual requirement for both far-red and red for maximum floral induction is mediated by an interaction between phyA1 and phyB1. In addition, a diurnal periodicity to the sensitivity of both negative and positive light signals was observed. This is consistent with existing models in which photoperiodic time measurement is not based on the actual measurement of the duration of either the light or dark period, but rather the coincidence of endogenous rhythms of sensitivity , both positive and negative , and the presence of light cues. [source]


Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 6 2007
Kadharbatcha S. Saleem
Abstract Although the perirhinal and parahippocampal cortices have been shown to be critically involved in memory processing, the boundaries and extent of these areas have been controversial. To produce a more objective and reproducible description, the architectonic boundaries and structure of the perirhinal (areas 35 and 36) and parahippocampal (areas TF and TH) cortices were analyzed in three macaque species, with four different staining methods [Nissl and immunohistochemistry for parvalbumin, nonphosphorylated neurofilaments (with SMI-32), and the m2 muscarinic acetylcholine receptor]. We further correlated the architectonic boundary of the parahippocampal cortex with connections to and from different subregions of anterior area TE and with previously published connections with the prefrontal cortex and temporal pole (Kondo et al. [2005] J. Comp. Neurol. 493:479,509). Together, these data provided a clear delineation of the perirhinal and parahippocampal areas, although it differs from previous descriptions. In particular, we did not extend the perirhinal cortex into the temporal pole, and the lateral boundaries of areas 36 and TF with area TE were placed more medially than in other studies. The lateral boundary of area TF in Macaca fuscata was located more laterally than in Macaca fascicularis or Macaca mulatta, although there was no difference in architectonic structure. We recognized a caudal, granular part of the parahippocampal cortex that we termed "area TFO." This area closely resembles the laterally adjacent area TE and the caudally adjacent area V4 but is clearly different from the more rostral area TF. These areas are likely to have distinct functions. J. Comp. Neurol. 500:973,1006, 2007. © 2006 Wiley-Liss, Inc. [source]


Synapses on NG2-expressing progenitors in the brain: multiple functions?

THE JOURNAL OF PHYSIOLOGY, Issue 16 2008
Vittorio Gallo
Progenitor cells expressing the proteoglycan NG2 represent approximately 5% of the total cells in the adult brain, and are found both in grey and white matter regions where they give rise to oligodendrocytes. The finding that these cells receive synaptic contacts from excitatory and inhibitory neurons has not only raised major interest in the possible roles of these synapses, but also stimulated further research on the developmental and cellular functions of NG2-expressing (NG2+) progenitors themselves in the context of neural circuit physiology. Here we review recent findings on the functional properties of the synapses on NG2+ cells in grey and white matter regions of the brain. In this review article we make an attempt to integrate current knowledge on the cellular and developmental properties of NG2+ progenitors with the functional attributes of their synapses, in order to understand the physiological relevance of neuron,NG2+ progenitor signal transmission. We propose that, although NG2+ progenitors receive synaptic contact in all brain regions where they are found, their synapses might have different developmental and functional roles, probably reflecting the distinct functions of NG2+ progenitors in the brain. [source]


Functional segregation of synaptic GABAA and GABAC receptors in goldfish bipolar cell terminals

THE JOURNAL OF PHYSIOLOGY, Issue 1 2006
Mary J. Palmer
The transmission of light responses to retinal ganglion cells is regulated by inhibitory input from amacrine cells to bipolar cell (BC) synaptic terminals. GABAA and GABAC receptors in BC terminals mediate currents with different kinetics and are likely to have distinct functions in limiting BC output; however, the synaptic properties and localization of the receptors are currently poorly understood. By recording endogenous GABA receptor currents directly from BC terminals in goldfish retinal slices, I show that spontaneous GABA release activates rapid GABAA receptor miniature inhibitory postsynaptic currents (mIPSCs) (predominant decay time constant (,decay), 1.0 ms) in addition to a tonic GABAC receptor current. The GABAC receptor antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) has no effect on the amplitude or kinetics of the rapid GABAA mIPSCs. In addition, inhibition of the GAT-1 GABA transporter, which strongly regulates GABAC receptor currents in BC terminals, fails to reveal a GABAC component in the mIPSCs. These data suggest that GABAA and GABAC receptors are highly unlikely to be synaptically colocalized. Using non-stationary noise analysis of the mIPSCs, I estimate that GABAA receptors in BC terminals have a single-channel conductance (,) of 17 pS and that an average of just seven receptors mediates a quantal event. From noise analysis of the tonic current, GABAC receptor , is estimated to be 4 pS. Identified GABAC receptor mIPSCs exhibit a slow decay (,decay, 54 ms) and are mediated by approximately 42 receptors. The distinct properties and localization of synaptic GABAA and GABAC receptors in BC terminals are likely to facilitate their specific roles in regulating the transmission of light responses in the retina. [source]


Catalysis in polymeric membrane reactors: the membrane role

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2010
M.G. Buonomenna
Abstract Polymeric catalytic membrane reactors (PCMRs) combine a polymeric membrane that controls transfers and a catalyst that provides conversion. This review focuses on the polymeric membrane. Depending on the application, the micro-environment of the catalyst in the PCMR may be quite different from that existing in conventional reactors. This could originate different performances of the catalyst properties compared to its use without membrane. In some cases, catalysts for use in PCMR might require a specific design. In particular, the study of PCMR is a multidisciplinary activity, including material science, chemistry, and chemical engineering. Membrane based reactive separation processes, which combine two distinct functions, i.e. reaction and separation, have been around as a concept since the early stages of the membrane field itself, but have only attracted substantial technical interest during the last decade or so. Liquid phase catalytic oxidations are involved in numerous industrial processes ranging from fine to bulk chemical synthesis. PCMR polymeric membranes may also play a significant role in this field. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]