Distinct Conformations (distinct + conformation)

Distribution by Scientific Domains


Selected Abstracts


Site-directed mutagenesis of the chemokine receptor CXCR6 suggests a novel paradigm for interactions with the ligand CXCL16

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 8 2008
Sarah
Abstract Chemokine receptor CXCR6 mediates the chemotaxis and adhesion of leukocytes to soluble and membrane-anchored forms of CXCL16, and is an HIV-1 co-receptor. Here, we describe the effects of mutation of acidic extracellular CXCR6 residues on receptor function. Although most CXCR6 mutants examined were expressed at levels similar to wild-type (WT) CXCR6, an N-terminal E3Q mutant was poorly expressed, which may explain previously reported protective effects of a similar single nucleotide polymorphism, with respect to late-stage HIV-1 infection. In contrast to several other chemokine receptors, mutation of the CXCR6 N,terminus and inhibition of post-translational modifications of this region were without effect on receptor function. Likewise, N-terminal extension of CXCL16 resulted in a protein with decent potency and efficacy in chemotaxis and not, as anticipated, a CXCR6 antagonist. D176N and E274Q CXCR6 mutants were unable to interact with soluble CXCL16, suggesting a critical role for D176 and E274 in ligand binding. Intriguingly, although unable to interact with soluble CXCL16, the E274Q mutant could promote robust adhesion to membrane-anchored CXCL16, suggesting that soluble and membrane-bound forms of CXCL16 possess distinct conformations. Collectively, our data suggest a novel paradigm for the CXCR6:CXCL16 interaction, a finding which may impact the discovery of small-molecule antagonists of CXCR6. [source]


An efficient algorithm for multistate protein design based on FASTER

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 5 2010
Benjamin D. Allen
Abstract Most of the methods that have been developed for computational protein design involve the selection of side-chain conformations in the context of a single, fixed main-chain structure. In contrast, multistate design (MSD) methods allow sequence selection to be driven by the energetic contributions of multiple structural or chemical states simultaneously. This methodology is expected to be useful when the design target is an ensemble of related states rather than a single structure, or when a protein sequence must assume several distinct conformations to function. MSD can also be used with explicit negative design to suggest sequences with altered structural, binding, or catalytic specificity. We report implementation details of an efficient multistate design optimization algorithm based on FASTER (MSD-FASTER). We subjected the algorithm to a battery of computational tests and found it to be generally applicable to various multistate design problems; designs with a large number of states and many designed positions are completely feasible. A direct comparison of MSD-FASTER and multistate design Monte Carlo indicated that MSD-FASTER discovers low-energy sequences much more consistently. MSD-FASTER likely performs better because amino acid substitutions are chosen on an energetic basis rather than randomly, and because multiple substitutions are applied together. Through its greater efficiency, MSD-FASTER should allow protein designers to test experimentally better-scoring sequences, and thus accelerate progress in the development of improved scoring functions and models for computational protein design. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010 [source]


Crystal structure of E. coli ,,carbonic anhydrase, an enzyme with an unusual pH,dependent activity

PROTEIN SCIENCE, Issue 5 2001
Jeff D. Cronk
CA, carbonic anhydrase; ECCA, Escherichia coli ,-carbonic anhydrase; PPCA, Porphyridium purpureum ,-carbonic anhydrase; PSCA, Pisum sativum ,-carbonic anhydrase; EXAFS, extended X-ray absorption fine structure spectroscopy; MAD, multiwavelength anomalous dispersion Abstract Carbonic anhydrases fall into three distinct evolutionary and structural classes: ,, ,, and ,. The ,-class carbonic anhydrases (,-CAs) are widely distributed among higher plants, simple eukaryotes, eubacteria, and archaea. We have determined the crystal structure of ECCA, a ,-CA from Escherichia coli, to a resolution of 2.0 Å. In agreement with the structure of the ,-CA from the chloroplast of the red alga Porphyridium purpureum, the active-site zinc in ECCA is tetrahedrally coordinated by the side chains of four conserved residues. These results confirm the observation of a unique pattern of zinc ligation in at least some ,-CAs. The absence of a water molecule in the inner coordination sphere is inconsistent with known mechanisms of CA activity. ECCA activity is highly pH-dependent in the physiological range, and its expression in yeast complements an oxygen-sensitive phenotype displayed by a ,-CA-deletion strain. The structural and biochemical characterizations of ECCA presented here and the comparisons with other ,-CA structures suggest that ECCA can adopt two distinct conformations displaying widely divergent catalytic rates. [source]


Discovery and Design of Novel HSP90 Inhibitors Using Multiple Fragment-based Design Strategies

CHEMICAL BIOLOGY & DRUG DESIGN, Issue 1 2007
Jeffrey R. Huth
The molecular chaperone HSP90 has been shown to facilitate cancer cell survival by stabilizing key proteins responsible for a malignant phenotype. We report here the results of parallel fragment-based drug design approaches in the design of novel HSP90 inhibitors. Initial aminopyrimidine leads were elaborated using high-throughput organic synthesis to yield nanomolar inhibitors of the enzyme. Second site leads were also identified which bound to HSP90 in two distinct conformations, an ,open' and ,closed' form. Intriguingly, linked fragment approaches targeting both of these conformations were successful in producing novel, micromolar inhibitors. Overall, this study shows that, with only a few fragment hits, multiple lead series can be generated for HSP90 due to the inherent flexibility of the active site. Thus, ample opportunities exist to use these lead series in the development of clinically useful HSP90 inhibitors for the treatment of cancers. [source]