Dispersing Agents (dispersing + agent)

Distribution by Scientific Domains


Selected Abstracts


Large-Scale Synthesis of Water Dispersible Ceria Nanocrystals by a Simple Sol,Gel Process and Their Use as a Chemical Mechanical Planarization Slurry

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 6 2008
Taekyung Yu
Abstract Ceria nanocrystals with a cube shape were synthesized from the hydrolytic sol,gel reaction of cerium salt in the presence of oleylamine. The overall synthetic process is very simple and readily applicable to the large-scale synthesis of tens of grams of product in a single reaction in air. These ceria nanocrystals are readily dispersible in aqueous media without the addition of any extra dispersing agent. The aqueous dispersion of the ceria nanocrystals was successfully used as a chemical mechanical polishing slurry, and it exhibited high removal selectivity between silicon oxide and silicon nitride at pH 7.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


Synthesis and characterizations of nanosized iron(II) hydroxide and iron(II) hydroxide/poly(vinyl alcohol) nanocomposite

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2010
M. Fathima Parveen
Abstract Nanosized Fe(OH)2 was synthesized by a coprecipitation method. Peaks between 500 and 1250 cm,1 in Fourier transform infrared (FTIR) spectroscopy confirmed the presence of metal hydroxide stretching. X-ray diffraction showed the suppressed crystalline system of Fe(OH)2/aniline (ANI) due to the presence of a higher weight percentage of the dispersing agent, ANI. Thermogravimetric analysis implied that 75.5 wt % of residue remained up to 800°C. High resolution transmission electron microscope (HRTEM) analysis of Fe(OH)2/ANI revealed that its size ranged from 10 to 50 nm with a rodlike morphology. Scanning electron microscopy implied that pristine Fe(OH)2 had a nanotriangular platelet morphology, and a higher weight percentage of dispersing agent intercalated with Fe(OH)2 had a spheroid with an agglomerated structure. The (UV,visible) spectrum implied the presence of Fe2+ ions at 326 nm and the existence of an amino group intercalated with Fe(OH)2 showed a sharp peak at 195 nm, the intensity of which increased with increasing intercalated dispersing agent weight percentage. Photoluminescence showed that ANI-intercalated Fe(OH)2 showed a lesser intensity than the pristine Fe(OH)2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


Preparation and properties of the single-walled carbon nanotube/cellulose nanocomposites using N -methylmorpholine- N -oxide monohydrate

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2010
Dong-Hun Kim
Abstract Single-walled carbon nanotube (SWNT)/cellulose nanocomposite films were prepared using N -methylmorpholine- N -oxide (NMMO) monohydrate as a dispersing agent for the acid-treated SWNTs (A-SWNTs) as well as a cellulose solvent. The A-SWNTs were dispersed in both NMMO monohydrate and the nanocomposite film (as confirmed by scanning electron microscopy) because of the strong hydrogen bonds of the A-SWNTs with NMMO and cellulose. The mechanical properties, thermal properties, and electric conductivity of the nanocomposite films were improved by adding a small amount of the A-SWNTs to the cellulose. For example, by adding 1 wt % of the A-SWNTs to the cellulose, tensile strain at break point, Young's modulus, and toughness increased , 5.4, , 2.2, and , 6 times, respectively, the degradation temperature increased to 9°C as compared with those of the pure cellulose film, and the electric conductivities at , (the wt % of A-SWNTs in the composite) = 1 and 9 were 4.97 × 10,4 and 3.74 × 10,2 S/cm, respectively. Thus, the A-SWNT/cellulose nanocomposites are a promising material and can be used for many applications, such as toughened Lyocell fibers, transparent electrodes, and soforth. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


A green process for preparing silver nanoparticles using spinning disk reactor

AICHE JOURNAL, Issue 2 2008
Clifford Y. Tai
Abstract The main theme of this research was to synthesize nanoparticles using green materials in a spinning disk reactor (SDR), which is a type of Higee equipment. The reducing agent and protecting agent were glucose and starch, respectively, either of which is an inexpensive and nontoxic material. Silver particles were prepared by continuously pumping two solutions, which were a mixture of AgNO3 aqueous solution containing protecting agent and another mixture of NaOH aqueous solution containing the reducing agent, into the chamber of the SDR, where a liquid,liquid reaction took place. The reaction time was less than 10 min, which was much shorter than the traditional methods. After washing and redispersing, silver particles of 10 nm or smaller were obtained, and the redispersed aqueous suspensions were stable for more than 40 days with or without the addition of a dispersing agent. A high-gravity process that combines economic benefit with environmental benignancy was successfully developed to produce silver nanoparticles. © 2007 American Institute of Chemical Engineers AIChE J, 2008 [source]


Solubility studies on valdecoxib in the presence of carriers, cosolvents, and surfactants

DRUG DEVELOPMENT RESEARCH, Issue 1 2004
Kashappa Goud H. Desai
Abstract Enhancement of the solubility of valdecoxib was examined using a series of hydrophilic carriers (mannitol, polyethylene glycol (PEG) 4000, PEG 6000, PEG 8000, and urea), surfactants (Tween-20, Tween-80, and sodium lauryl sulfate [SLS]) and cosolvents (ethanol, methanol, and glycerol) at 37°C. The solubility of valdecoxib could be enhanced significantly using PEG 4000 as a carrier, ethanol as cosolvent, and SLS as a surfactant. Because the solubility of valdecoxib increased dramatically in the presence of polyethylene glycols, these are suitable dispersing agents for preparing solid dispersions containing valdecoxib. Gibbs free energy (,G) values were all negative for all hydrophilic carriers tested, indicating the spontaneous nature of valdecoxib solubilisation. Among the cosolvents, ethanol exhibited higher solubilization potential than methanol and glycerol. As the dielectric constant of the cosolvent,water mixtures decreased, the solubility of valdecoxib increased. Finally, SLS exerted maximum solubilization of valdecoxib when compared to Tween-20 or Tween-80. The crystallinity of valdecoxib was explored by X-ray diffraction study and showed numerous crystalline peaks. Examination of surface morphology by scanning electron microscopy depicted a near spherical shape of valdecoxib with irregular surface characteristics. Drug Dev. Res. 62:41,48, 2004. © 2004 Wiley-Liss, Inc. [source]


Voltammetric Reduction of a 4-Nitroimidazole Derivative on a Multiwalled Carbon Nanotubes Modified Glassy Carbon Electrode

ELECTROANALYSIS, Issue 13 2008
P. Jara-Ulloa
Abstract We report the electrochemical behavior of a 4-nitroimidazole derivative, 1-methyl-4-nitro-2-hydroxymethylimidazole (4-NImMeOH), on glassy carbon electrode (GCE) modified with multiwalled carbon nanotubes (MWCNT). As dispersing agents, dimethylformamide (DMF) and water were used. The electrochemical response of the resulting electrodes was evaluated using linear sweep, cyclic and square-wave voltammetry (LSV, CV and SWV). Several parameters such as medium pH, nature and concentration of the CNTs dispersion and accumulation time were tested. The optimal conditions determined for obtain better response were: pH,2, dispersion concentration=4,mg/mL of CNT in water, accumulation time=7,min. The MWCNT-modified GCE exhibited attractive electrochemical properties producing enhanced currents with a significant reduction in the overpotential and good signal-to-noise characteristics, in comparison with the bare GCE. The modified electrode is highly repeatable for consecutive measurements, reaching a variation coefficient of 2.9% for ten consecutive runs. [source]


A general strategy for highly efficient nanoparticle dispersing agents based on hybrid dendritic linear block copolymers

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 5 2009
Robert Vestberg
Abstract A modular approach to the synthesis of a library of hybrid dendritic-linear copolymers was developed based on RAFT polymerization from monodisperse dendritic macroRAFT agents. By accurately controlling the molecular weight of the linear block, generation number of the dendrimer and the nature of the dendritic chains ends, the performance of these hybrid block copolymers as dispersing agents was optimized for a range of nanoparticles. For titanium dioxide nanoparticles, dispersion in a poly(methyl methacrylate) matrix was maximized with a second generation dendrimer containing four carboxylic acid end groups, and the quality of dispersion was observed to be superior to commercial dispersing agents for TiO2. This approach also allowed novel hybrid dendritic-linear dispersing agents to be prepared for the dispersion of Au and CdSe nanoparticles based on disulphide and phosphine oxide end groups, respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1237,1258, 2009 [source]