Home About us Contact | |||
Dispersal Capacity (dispersal + capacity)
Selected AbstractsDispersal capacity in the Mediterranean corn borer, Sesamia nonagrioidesENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2004M. Eizaguirre Abstract Corn (Zea mays L.) borers are the primary target of Bacillus thuringiensis Berliner (Bt) transgenic maize. Management of corn borer resistance to Bt requires information on larval and adult dispersal capacities, a feature that is particularly unknown in Sesamia nonagrioides Lefèbvre (Lepidoptera: Noctuidae), the most damaging corn borer in Spain. Larval dispersal was studied over a 3 year period by infesting plants with egg masses and dissecting the neighbouring plants 7, 14, and 32 days later to measure larval dispersal at several ages. The number and age of larvae were recorded in the dissected plants. Only mature larvae dispersed in significant numbers; they moved at least to rows adjacent to those containing the infested plant, and down the row five plants. The percentage of larvae that dispersed from the infested plant was density-dependent. Adult dispersal was studied with directional light and pheromone uni-traps over 5 and 3 year periods, respectively. Directional light traps were placed in the margins between Bt and non-Bt maize fields, half oriented towards each of the two kinds of maize field. Pheromone traps were placed in the Bt and non-Bt fields at increasing distances (0,100 m) from the border. The numbers of males and females caught in directional light traps were not different in traps oriented towards Bt or non-Bt fields, but the number of males caught in the third flight in Bt fields was lower than in non-Bt fields. These results suggest that males from adjacent Bt and non-Bt fields mate indiscriminately with females emerging in any of the two kinds of maize fields. However, male movement in the third flight may not be sufficient to randomly distribute males between the two fields. [source] Biogeography of the Limacoidea sensu lato (Gastropoda: Stylommatophora): vicariance events and long-distance dispersalJOURNAL OF BIOGEOGRAPHY, Issue 2 2000B. Hausdorf Abstract Aim Reconstruction of the historical biogeography of the Limacoidea sensu lato (including the Staffordiidae, Dyakiidae, Gastrodontoidea, Parmacelloidea, Zonitidae, Helicarionoidea and Limacoidea). Evaluation of the relative importance of dispersal and its consequences. Location World-wide. Methods Weighted ancestral area analysis. Results The ancestral areas of the individual clades have been delimited using weighted ancestral area analysis and a sequence of possible vicariance and dispersal events has been suggested. The results of the ancestral area analysis have tentatively been correlated with Cretaceous and Tertiary palaeogeography. The widely overlapping distribution patterns of several families of the Limacoidea testify to extensive dispersal events. Dispersal capacity of land snails is correlated with body size. The significant negative correlation between body size and distribution area size corroborates the importance of passive dispersal for the evolution of the distribution patterns. Main conclusions The existence of extensive dispersal events of poor active dispersers like land snails diminishes the importance of recent distribution patterns for the reconstruction of palaeogeography. On the other hand, dispersal ensures that biogeographical data reflect the geographical configurations at a given time and renders the use of palaeobiogeographic data for the reconstruction of palaeogeographic configurations of the respective age possible. [source] Dispersal capacity in the Mediterranean corn borer, Sesamia nonagrioidesENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2004M. Eizaguirre Abstract Corn (Zea mays L.) borers are the primary target of Bacillus thuringiensis Berliner (Bt) transgenic maize. Management of corn borer resistance to Bt requires information on larval and adult dispersal capacities, a feature that is particularly unknown in Sesamia nonagrioides Lefèbvre (Lepidoptera: Noctuidae), the most damaging corn borer in Spain. Larval dispersal was studied over a 3 year period by infesting plants with egg masses and dissecting the neighbouring plants 7, 14, and 32 days later to measure larval dispersal at several ages. The number and age of larvae were recorded in the dissected plants. Only mature larvae dispersed in significant numbers; they moved at least to rows adjacent to those containing the infested plant, and down the row five plants. The percentage of larvae that dispersed from the infested plant was density-dependent. Adult dispersal was studied with directional light and pheromone uni-traps over 5 and 3 year periods, respectively. Directional light traps were placed in the margins between Bt and non-Bt maize fields, half oriented towards each of the two kinds of maize field. Pheromone traps were placed in the Bt and non-Bt fields at increasing distances (0,100 m) from the border. The numbers of males and females caught in directional light traps were not different in traps oriented towards Bt or non-Bt fields, but the number of males caught in the third flight in Bt fields was lower than in non-Bt fields. These results suggest that males from adjacent Bt and non-Bt fields mate indiscriminately with females emerging in any of the two kinds of maize fields. However, male movement in the third flight may not be sufficient to randomly distribute males between the two fields. [source] Comparative phylogeography of five avian species: implications for Pleistocene evolutionary history in the Qinghai-Tibetan plateauMOLECULAR ECOLOGY, Issue 2 2010Y. QU Abstract Pleistocene climate fluctuations have shaped the patterns of genetic diversity observed in extant species. In contrast to Europe and North America where the effects of recent glacial cycles on genetic diversity have been well studied, the genetic legacy of the Pleistocene for the Qinghai-Tibetan (Tibetan) plateau, a region where glaciation was not synchronous with the North Hemisphere ice sheet maxima, remains poorly understood. Here, we compared the phylogeographical patterns of five avian species on the Qinghai-Tibetan plateau by three mitochondrial DNA fragments: the Tibetan snow finch (Montifringilla adamsi), the Blanford's snow finch (Pyrgilauda blanfordi), the horned lark (Eremophila alpestris), the twite (Carduelis flavirostris) and the black redstart (Phoenicurus ochruros). Our results revealed the three species mostly distributed on the platform region of the plateau that experienced population expansion following the retreat of the extensive glaciation period (0.5,0.175 Ma). These results are at odds with the results from avian species of Europe and North America, where population expansions occurred after Last Glacial Maximum (LGM, 0.023,0.018 Ma). A single refugium was identified in a restricted semi-continuous area around the eastern margin of the plateau, instead of multiple independent refugia for European and North American species. For the other two species distributed on the edges of the plateau (the twite and black redstart), populations were maintained at stable levels. Edge areas are located on the eastern margin, which might have had little or no ice cover during the glaciation period. Thus, milder climate may have mitigated demographic stresses for edge species relative to the extremes experienced by platform counterparts, the present-day ranges of which were heavily ice covered during the glaciation period. Finally, various behavioural and ecological characteristics, including dispersal capacities, habitat preference and altitude specificity along with evolutionary history might have helped to shape different phylogeographical structures appearing in these five species. [source] Genetic structure and random amplified polymorphic DNA diversity of the rapidly declining Angelica palustris (Apiaceae) in Eastern Germany in relation to population size and seed productionPLANT SPECIES BIOLOGY, Issue 3 2005ANKE DITTBRENNER Abstract Angelica palustris (Besser) Hoffm. (Apiaceae) is a rare wetland community species that is currently rapidly declining because of changes in land use. In the present study, we analyzed patterns of random amplified polymorphic DNA (RAPD) variation among nine populations of A. palustris in Germany to assess its overall genetic condition. We aimed to examine the level of genetic diversity as well as its local differentiation in relation to population size and geographic distancing between populations. Results achieved from ,ST statistics and amova indicated that most of the variability is distributed among individuals within the populations (57.7%), whereas among-population variation accounted for 30.2% of the variation. Variation between regions was 12.1%. This corresponds to the results of a multivariate analysis based on the asymmetric Soerensen similarity, which also suggested a strong population differentiation, as would be expected from a short-lived species with limited seed dispersal capacities that had never covered extensive areas in Eastern Germany. Consistently the geographic differentiation was not reflected in the RAPD profile. Significant correlations were noted between population size and the percentage of polymorphic loci (P < 0.05) and genetic diversity (P < 0.05). An analysis of seed production showed positive relationships between average seed number and levels of genetic variation. Our results support concerns regarding the loss of genetic diversity in endangered plant populations because this process might have harmful effects on reproductive fitness. [source] Dynamic distribution modelling: predicting the present from the pastECOGRAPHY, Issue 1 2009Stephen G. Willis Confidence in projections of the future distributions of species requires demonstration that recently-observed changes could have been predicted adequately. Here we use a dynamic model framework to demonstrate that recently-observed changes at the expanding northern boundaries of three British butterfly species can be predicted with good accuracy. Previous work established that the distributions of the study species currently lag behind climate change, and so we presumed that climate is not currently a major constraint at the northern range margins of our study species. We predicted 1970,2000 distribution changes using a colonisation model, MIGRATE, superimposed on a high-resolution map of habitat availability. Thirty-year rates and patterns of distribution change could be accurately predicted for each species (, goodness-of-fit of models >0.64 for all three species, corresponding to >83% of grid cells correctly assigned), using a combination of individual species traits, species-specific habitat associations and distance-dependent dispersal. Sensitivity analyses showed that population productivity was the most important determinant of the rate of distribution expansion (variation in dispersal rate was not studied because the species are thought to be similar in dispersal capacity), and that each species' distribution prior to expansion was critical in determining the spatial pattern of the current distribution. In future, modelling approaches that combine climate suitability and spatially-explicit population models, incorporating demographic variables and habitat availability, are likely to be valuable tools in projecting species' responses to climatic change and hence in anticipating management to facilitate species' dispersal and persistence. [source] Larval food stress differentially affects flight morphology in male and female speckled woods (Pararge aegeria)ECOLOGICAL ENTOMOLOGY, Issue 3 2009BORIS PELLEGROMS Abstract 1.,Adaptive plasticity in flight morphology can be of great importance for organisms, in order to deal with changing environments. When different demands are imposed to this morphology, different responses to environmental changes can be expected. 2.,The aim of this study is to examine whether males and females of Pararge aegeria, which show different flight behaviours, respond differently to larval food stress. 3.,In a food-stress experiment, larvae of 35 families were reared on host plants subjected to a drought-stress treatment with three groups: a control group, a low-stress group and a high-stress group. 4.,Individuals from stress treatments significantly differed in wing morphology; they had lower wing loadings, and stressed females tended to have more pointed wings than females of the control group. 5.,The difference in phenotypic response to food stress between both sexes may indicate that males and females benefit from different changes in morphology. In females, an increase in dispersal capacity may entail fitness benefits, whereas male morphology is mainly shaped by mate-location strategy. [source] To sink or float: the fate of dormant offspring is determined by maternal behaviour in DaphniaFRESHWATER BIOLOGY, Issue 3 2008LUSARCZYK, MIROS Summary 1As the ephippia (chitinous shells enclosing diapausing eggs) of pelagic crustaceans of the genus Daphnia have been occasionally reported to float at the water surface, we considered that this might be an adaptation promoting their passive dispersal. We investigated the mechanisms by which ephippia appear at the water surface. 2While field surveys revealed that floating Daphnia ephippia are often numerous in various freshwater habitats, laboratory tests showed that newly formed ephippia are not buoyant initially. Once transferred to the surface by whatever means, however, they may remain there due either to surface tension or gas absorption. 3Video recordings showed that all ephippia at the water surface in laboratory vessels were shed there by ephippial females when moulting (despite the attendant risk of exposure to UV radiation). This implies that the moulting behaviour of female Daphnia may determine the fate of their dormant offspring, predetermining whether they remain in the natal environment (when the ephippium is released into the water column) or disperse (when it is deposited at the water surface). 4Our findings reveal a potential mechanism underlying the high dispersal capacity of freshwater cladocerans inhabiting island-like aquatic habitats. [source] Energetic trade-off between maintenance costs and flight capacity in the sand cricket (Gryllus firmus)FUNCTIONAL ECOLOGY, Issue 4 2008R. F. Nespolo Summary 1Energetic trade-offs are those compromises that appear when the energy budget of an individual's life history closely matches or exceeds the net available energy in the environment in a given moment. In these situations, two or more functions can compete and organisms face physiological decisions in order to survive and reproduce. 2In insects, one of the most costly investments is flight capacity, which increases dispersal capacity but is energetically expensive. Adult sand crickets (Gryllus firmus) can vary drastically in this capacity, being macropterous or micropterous depending on whether they exhibit flight-capable wings. However, this binary phenotype has a continuous subjacent determinant in the macropterous morph which is the mass of the muscles that power flight, the dorso-longitudinal muscles (DLM). 3Using respirometric measurements, we studied a potential trade-off between body parts, the mass of the DLM and energy metabolism (including both maximum and average metabolism). By recording the metabolic rate of c. 180 crickets and then dissecting and weighing their body parts, we took advantage of the correlational structure to infer associations between energetic and morphological variables. We found that the residual mass of the DLM shows a quadratic relationship with residual resting and average metabolism: at low DLM mass there is a negative relationship, which becomes positive at higher DLM mass. 4We suggest that this pattern of covariance is a consequence of the negative correlation between DLM mass and gonad mass, and the relative contribution of functional vs. non-functional DLM. Then, by using energetics and a combination of multivariate and correlational statistics we were able to show how two important life-history functions (i.e. Dispersal and fecundity) compete for the same resources in an insect species. [source] Nested assemblages of Orthoptera species in the Netherlands: the importance of habitat features and life-history traitsJOURNAL OF BIOGEOGRAPHY, Issue 11 2007M. A. Schouten Abstract Aim, Species communities often exhibit nestedness, the species found in species-poor sites representing subsets of richer ones. In the Netherlands, where intensification of land use has led to severe fragmentation of nature, we examined the degree of nestedness in the distribution of Orthoptera species. An assessment was made of how environmental conditions and species life-history traits are related to this pattern, and how variation in sampling intensity across sites may influence the observed degree of nestedness. Location, The analysis includes a total of 178 semi-natural sites in the Pleistocene sand region of the Netherlands. Methods, A matrix recording the presence or absence of all Orthoptera species in each site was compiled using atlas data. Additionally, separate matrices were constructed for the species of suborders Ensifera and Caelifera. The degree of nestedness was measured using the binmatnest calculator. binmatnest uses an algorithm to sort the matrices to maximal nestedness. We used Spearman's rank correlations to evaluate whether sites were sorted by area, isolation or habitat heterogeneity, and whether species were sorted by their dispersal ability, rate of development or degree of habitat specificity. Results, We found the Orthoptera assemblages to be significantly nested. The rank correlation between site order and sampling intensity was high. The degree of nestedness was lower, but remained significant when under- and over-sampled sites were excluded from the analysis. Site order was strongly correlated with both size of sample site and number of habitat types per site. Rank correlations showed that species were probably ordered by variation in habitat specificity, rather than by variation in dispersal capacity or rate of development of the species. Main conclusions, Variation in sampling intensity among sites had a strong impact on the observed degree of nestedness. Nestedness in habitats may underlie the observed nestedness within the Orthoptera assemblages. Habitat heterogeneity is closely related to site area, which suggests that several large sites should be preserved, rather than many small sites. Furthermore, the results corroborate a focus of nature conservation policy on sites where rare species occur, as long as the full spectrum of habitat conditions and underlying ecological processes is secured. [source] Influence of the spatial distribution of human hosts and large size containers on the dispersal of the mosquito Aedes aegypti within the first gonotrophic cycleMEDICAL AND VETERINARY ENTOMOLOGY, Issue 1 2010R. MACIEL-DE-FREITAS It is generally accepted that Aedes aegypti (L.) (Diptera: Culicidae) has a short dispersal capacity, and that displacement can be influenced by the availability of oviposition sites in the surroundings of emergence or release sites. In the present article, we observed the influence of spatial heterogeneity of large containers and human hosts on the cumulative flight direction of Ae. aegypti females during the first gonotrophic cycle, testing the hypothesis that they aggregate in resource-rich areas, i.e. where there are higher concentrations of large containers and/or humans per habitation. We analysed data from pupal surveys and mark-release-recapture experiments (non-blood-fed females were released) carried out in two dengue endemic neighbourhoods of Rio de Janeiro, Brazil: Tubiacanga (a suburb, with a human density of 337 inhabitants/ha) and Favela do Amorim (a slum, with a human density of 901 inhabitants/ha). In both areas, host-seeking females of three different release cohorts showed an overall non-uniform and extensive dispersal from their release point within 1,2 days post-release. At 4,5 days post-release, when many of the released females would be expected to be gravid, in Tubiacanga most mosquitoes were collected in areas with a relatively higher density of containers/premise, independently of the density of residents/house, whereas in Favela do Amorim, almost half of the captured mosquitoes were collected in relatively resource-poorer areas. Although Ae. aegypti dispersal patterns varied between sites, overall the distances travelled from the release point and the cumulative flight directions were correlated with the density of containers and hosts, more markedly in Tubiacanga than in Favela do Amorim. [source] Predicted impact of climate change on threatened terrestrial vertebrates in central Spain highlights differences between endotherms and ectothermsANIMAL CONSERVATION, Issue 4 2010P. Aragón Abstract Climate change can induce shifts in species ranges. Of special interest are range shifts in regions with a conflict of interest between land use and the conservation of threatened species. Here we focus on the 94 threatened terrestrial vertebrates occurring in the Madrid region (Central Spain) and model their distributions using data for the whole peninsular Spain to evaluate which vertebrate groups are likely to be more sensitive to climatic change. First, we generated predictive models to quantify the extent to which species distributions are explained by current climate. We then extrapolated the models temporally to predict the effects of two climate-change scenarios on species distributions. We also examined the impact on a recently proposed reserve relative to other interconnected zones with lower protection status but categorized as Areas of Community Importance by the European Union. The variation explained by climatic predictors was greater in ectotherms. The change in species composition differed between the proposed reserve and the other protected areas. Endothermic and ectothermic vertebrates had different patterns of changes in species composition but those of ectotherms matched with temperature departures predicted by climate change. Our results, together with the limited dispersal capacity of herptiles, suggest that trade-offs between different design criteria accounting for animal group differences are necessary for reserve selection. [source] The relationship between soil seed bank, above-ground vegetation and disturbance intensity on old-field successional permanent plotsAPPLIED VEGETATION SCIENCE, Issue 4 2009Michaela Dölle Abstract Questions: How does disturbance and successional age influence richness, size and composition of the soil seed bank? What is the potential contribution of the soil seed bank to the plant community composition on sites differing in their successional age or disturbance intensity? Location: Experimental Botanical Garden of Göttingen University, central Germany. Methods: Above-ground vegetation and soil seed bank were studied on formerly arable fields in a 36-year-old permanent plot study with five disturbance intensities, ranging from yearly ploughing via mowing to long-term uninterrupted succession. We compared species compositions, seed densities and functional features of the seed bank and above-ground vegetation by using several methods in parallel. Results: The seed bank was mainly composed of early successional species typical of strongly disturbed habitats. The difference between seed bank composition and above-ground vegetation decreased with increasing disturbance intensity. The species of greatest quantitative importance in the seed bank was the non-native forb Solidago canadensis. Conclusions: The ability of a plant community to regenerate from the soil seed bank dramatically decreases with increasing time since abandonment (successional age) and with decreasing disturbance intensity. The present study underlines that plant species typical of grasslands and woodlands are limited by dispersal capacity, owing to low capacity for accumulation of seeds in the soil and the fact that most species do not build up persistent seed banks. Rare and target species were almost absent from the seed bank and will, after local elimination, depend on reintroduction for continuation of their presence. [source] Niche breadth rather than reproductive traits explains the response of wetland monocotyledons to land-cover changeAPPLIED VEGETATION SCIENCE, Issue 1 2009Joan Pino Abstract Question: We hypothesised that, even within the same plant functional group, there are specific distributions in land-cover classes and with land-cover change that are associated with niche breadth rather than reproductive strategy, and that the broader the niche of the species the better they cope with different land-cover classes and changes over time. Location: The Llobregat Delta (Barcelona, Spain). Methods: We analysed the distribution pattern of eight coexisting wetland perennial monocotyledons within human disturbance classes (obtained from the classification of land-cover categories in relation to their level of human disturbance) and changes in such classes from 1956 to 1999. We then compared species regional abundance and distribution patterns with seed dispersal type (wind dispersed versus non-wind dispersed species), vegetative spread (tussock versus caespitose-running species), and niche breadth (the number of phytosociological alliances in which each species is found). Results: Regional abundance of the species was positively related to niche breadth, but was independent of reproductive traits. Similarly, distribution in human disturbance classes and their changes were associated with niche breadth rather than reproductive traits. In general, the more specialist the species, (i) the more they are concentrated in natural habitats, (ii) the less land-cover changes they are able to cope with, and (iii) the more they are restricted to stable change types, particularly to longstanding natural areas. Conclusions: Ecological plasticity rather than dispersal capacity of dominant perennial monocotyledons determines their regional abundance and their ability to cope with recent and future land-cover changes in Mediterranean wetlands. As habitat specialists are less resistant to landscape change than generalists, floristic homogenisation may progress in these habitats with the likely scenario of increasing land-cover turnover. [source] Avian fruit consumption and seed dispersal in a temperate Australian woodlandAUSTRAL ECOLOGY, Issue 2 2002Margaret C. Stanley Abstract The effectiveness of avian fruit consumers as seed dispersers of fleshy-fruited plants was studied in a temperate woodland community. As a consequence of the short and overlapping fruiting phenologies of fleshy-fruited plant species in temperate regions of Australia, there are very few avian species that are true specialist frugivores. The relative importance of bird species as fruit consumers was investigated, and how their foraging activities, movements and gut treatment of seeds affected dispersal of viable seeds away from the parent plant was examined. Fruit consumption and consumer seed dispersal capacity were assessed in this study through faecal analyses and by testing the viability of seeds that had passed through the gut of avian consumers. Behavioural observations enabled us to determine the consumption rates of, and quantities of fruit consumed by, various bird species and the amount of time spent feeding. Silvereyes (Zosterops lateralis) were the dominant fruit consumers in the community, although 19 bird species were either observed consuming fruit or provided faecal samples that contained fruit. Silvereyes had a high local abundance at the site and more than 90% of silvereyes'faecal samples contained the seeds of fruiting plants (n = 409). Large numbers of fruit were consumed per visit by silvereyes, particularly for Rhagodia parabolica (fragrant saltbush). Silvereyes consumed an average of four R. parabolica fruit per 5 s and up to a maximum 40 fruit per visit. Viability was high for seeds recovered from silvereyes'faeces (R. parabolica, 94.4% viable; Hymenanthera dentata, 100% viable). However, the number of seeds per faecal sample was high for R. parabolica, which may result in density-dependent seed mortality. Gut passage rate for silvereyes fed R. parabolica fruit in captivity was 31.5 ± 1.9 min. Silvereyes remained at fruiting plants for very short periods (average 50-60 s) and in most cases moved away from the parent plant, primarily toward canopy trees. Given the short visit duration of silvereyes, individuals would have left the parent plant well before seeds passed through the gut. Rhagodia parabolica fruit was consumed by a large number of bird species in the community, including species often thought of as exclusively insectivorous or nectarivorous. These species are likely to disperse viable R. parabolica seeds into microhabitats different from those visited by silvereyes. [source] Genetic and morphological divergence reveals local subdivision of perch (Perca fluviatilis L.)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009SARA BERGEK The level of gene flow is an important factor influencing genetic differentiation between populations. Typically, geographic distance is considered to be the major factor limiting dispersal and should thus only influence the degree of genetic divergence at larger spatial scales. However, recent studies have revealed the possibility for small-scale genetic differentiation, suggesting that the spatial scale considered is pivotal for finding patterns of isolation by distance. To address this question, genetic and morphological differentiation were studied at two spatial scales (range 2,13 km and range 300 m to 2 km) in the perch (Perca fluviatilis L.) from the east coast archipelago of Sweden, using seven microsatellite loci and geometric morphometrics. We found highly significant genetic differentiation between sampled locations at both scales. At the larger spatial scale, the distance per se was not affecting the level of divergence. At the small scale, however, we found subtle patterns of isolation by distance. In addition, we also found morphological divergence between locations, congruent with a spatial separation at a microgeographic scale, most likely due to phenotypic plasticity. The present study highlights the importance of geographical scale and indicates that there might be a disparity between the dispersal capacity of a species and the actual movement of genes. Thus, how we view the environment and possible barriers to dispersal might have great implications for our ability to fully understand the evolution of genetic differentiation, local adaptation, and, in the end, speciation. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96, 746,758. [source] |