Home About us Contact | |||
Discordant Patterns (discordant + pattern)
Selected AbstractsThe colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivityMOLECULAR ECOLOGY, Issue 14 2005R. VEROVNIK Abstract Recent continental-scale phylogeographic studies have demonstrated that not all freshwater fauna colonized Europe from the classic Mediterranean peninsular refugia, and that northern or central parts of the continent were occupied before, and remained inhabited throughout the Pleistocene. The colonization history of the ubiquitous aquatic isopod crustacean Asellus aquaticus was assessed using mitochondrial COI and a variable part of nuclear 28S rDNA sequences. Phylogeographic analysis of the former suggested that dispersion proceeded possibly during late Miocene from the western part of the Pannonian basin. Several areas colonized from here have served as secondary refugia and/or origins of dispersion, well before the beginning of the Pleistocene. Postglacial large-scale range expansion was coupled with numerous separate local dispersions from different refugial areas. Connectivity of the freshwater habitat has played an important role in shaping the current distribution of genetic diversity, which was highest in large rivers. The importance of hydrographic connections for the maintenance of genetic contact was underscored by a discordant pattern of mtDNA and nuclear rDNA differentiation. Individuals from all over Europe, differing in their mtDNA to a level normally found between species or even genera (maximal within population nucleotide divergence reached 0.16 ± 0.018), shared the same 28S rRNA gene sequence. Only populations from hydrographically isolated karst water systems in the northwestern Dinaric Karst had distinct 28S sequences. Here isolation seemed to be strong enough to prevent homogenization of the rRNA gene family, whereas across the rest of Europe genetic contact was sufficient for concerted evolution to act. [source] Genetic relationships of the western Mediterranean painted frogs based on allozymes and mitochondrial markers: evolutionary and taxonomic inferences (Amphibia, Anura, Discoglossidae)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2006ZANGARI FRANCESCA Allozymes and sequencing of mitochondrial cytochrome b (cyt b) and 12S genes were used to reconstruct the genetic structure and phylogenetic relationships of all Discoglossus taxa described so far (except the probably extinct D. nigriventer). This is the first time that a comprehensive study on the Discoglossus painted frogs has used nuclear and mitochondrial markers, evidencing a discordant pattern between the two datasets. Comparison of these discrepancies suggests a role of stochastic sorting of ancestral polymorphisms, possibly associated with male-biased dispersal and present or past secondary contact. The genetic relationships between taxa with intermediate levels of divergence were well defined by allozyme data, but showed short internodes and low bootstrap values for mitochondrial data, suggesting a rapid radiation of their lineages during the Messinian Lago Mare phase. The results provide information about the taxonomic status of D. galganoi and D. jeanneae, considered as subspecies, and indicate D. pictus as nonmonophyletic, confirming D. scovazzi as a distinct species. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 87, 515,536. [source] Deep genetic divergences among morphologically similar and parapatric Skistodiaptomus (Copepoda: Calanoida: Diaptomidae) challenge the hypothesis of Pleistocene speciationBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009RYAN A. THUM We used mitochondrial [cytochrome c oxidase subunit I (CO I), cytochrome b, and 16S] and nuclear [internal transcribed spacer (ITS) phylogenies of Skistodiaptomus copepods to test hypotheses of Pleistocene divergence and speciation within the genus. Mitochondrial (mt)DNA sequence divergences do not support hypotheses for Pleistocene speciation and instead suggest much more ancient speciation events in the genus. Skistodiaptomus oregonensis and Skistodiaptomus pygmaeus (i.e. two morphologically similar and parapatric species) exhibited uncorrected mtDNA sequence divergences exceeding 20%. Similarly, we identified three divergent clades of Skistodiaptomus pallidus that exhibited mtDNA sequence divergences exceeding 15%, suggesting that even intraspecific divergence within this morphospecies predates the Pleistocene. We found clear evidence of CO I pseudogenes in S. pygmaeus, but their presence did not lead to significant overestimates of sequence divergences for this gene. Substitution saturation and strong purifying selection have most likely led to underestimates of sequence divergences and divergence times among Skistodiaptomus. The widespread phenomenon of morphological stasis among genetically divergent copepod groups indicates that speciation often occurs with little or no morphological change. Instead, morphological evolution may occur idiosyncratically after speciation and create discordant patterns of morphological similarity, shared ancestry and divergence time. Cryptic species complexes are therefore common in copepods, and morphological species concepts underestimate their true species diversity. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96, 150,165. [source] Clonal origin of multifocal hepatocellular carcinomaCANCER, Issue 17 2010Kurt B. Hodges MD Abstract BACKGROUND: Hepatocellular carcinoma is the most common primary tumor of the liver. Patients frequently have multiple histologically similar, but anatomically separate tumors. The clonal origin of multiple hepatocellular carcinomas is uncertain. METHODS: The authors analyzed 31 tumors from 12 different patients (11 women, 1 man), who had multiple hepatocellular carcinomas involving 1 or both lobes. Genomic DNA was extracted from formalin-fixed, paraffin-embedded tissue using laser capture microdissection. DNA was analyzed for loss of heterozygosity (LOH), X chromosome inactivation status, and TP53 gene mutations. RESULTS: Ten (83%) of the 12 patients showed LOH in at least 1 of the analyzed microsatellite markers. Concordant LOH patterns between separate hepatocellular carcinomas in individual patients were seen in 8 (80%) of 10 cases, whereas discordant patterns were seen in 2 (20%) of 10 cases. Five (50%) of 10 informative female patients showed identical nonrandom X chromosome inactivation patterns in multiple tumors; 1 case showed discordant nonrandom X chromosome inactivation pattern. TP53 mutations were identified in 8 (67%) of 12 patients. Tumors in 7 (88%) of these 8 patients showed different point mutations. Three patients (Cases 4, 5, and 10) had tumors with additional TP53 point mutations, indicating additional genetic abnormalities in these tumors. CONCLUSIONS: The data suggested that the significant proportion of patients with multifocal hepatocellular carcinomas have tumors of common clonal origin. Cancer 2010. © 2010 American Cancer Society. [source] High throughput comparative genomic hybridization array analysis of multifocal urothelial cancersCANCER SCIENCE, Issue 8 2006Hiroaki Kawanishi The purpose of this study was to examine genetic alterations occur during synchronous or metachronous multifocal development of urothelial cancers on the whole genome using a comparative genomic hybridization (CGH) array. We used 10 tumor pairs (2 tumors for each patient), in which we had previously defined a clonal relationship by microsatellite analysis. For CGH array analysis, Vysis GenoSensor Array 300 kit was used. An unsupervised hierarchical cluster analysis revealed that the tumors from one patient were clustered together independent of the tumors of all other patients. On the other hand, many genetic divergences among multifocal urothelial cancers were newly found by a CGH array analysis. The concordant genetic alteration patterns of the chromosomal arm in tumor pairs were most frequently observed in 9p, 9q, 8p, 7p, 7q and 11q, while discordant patterns were most frequently found in 15q, 20q, 2q, 10p and 11q. Investigation using a CGH array showed that genetically stable multifocal tumors were less frequent, and that a large percentage of urothelial cancers accumulate genetic alterations during multifocal development by clonal evolution. We might have to consider these genetic accumulations during multifocal development when designing strategies for prevention and detection of recurrent multifocal urothelial cancers. CGH array can be a powerful tool for genetic analysis of multifocal urothelial cancer. (Cancer Sci 2006; 97: 746,752) [source] |