Home About us Contact | |||
Discrete Element Method (discrete + element_method)
Selected AbstractsGranular mixing and segregation in a horizontal rotating drum: A simulation study on the impact of rotational speed and fill levelAICHE JOURNAL, Issue 12 2008M. M. H. D. Arntz Abstract The rich phase behavior of granular beds of bidisperse hard spherical particles in a rotating horizontal drum is studied by Discrete Element Method (DEM) simulations. Several flow regimes and various forms of radial segregation, as well as mixing, are observed by systematically varying the operational parameters of the drum, i.e. fill level and angular velocity, over a wide range. Steady states after several dozen revolutions are summarized in two bed behavior diagrams, showing strong correlations between flow regime and segregation pattern. An entropy method quantifies the overall degree of mixing, while density and velocity plots are used to analyze the local properties of the granular bed. The percolation mechanism may provide a qualitative explanation for the distinct segregation processes, and for the transient mixing in nonradially segregated beds. Initially blockwise segregated beds are found to mix before radial segregation sets in. High fill fractions (>65%) show the most intense segregation. © 2008 American Institute of Chemical Engineers AIChE J, 2008 [source] Heat conduction in granular materialsAICHE JOURNAL, Issue 5 2001Watson L. Vargas Heat transfer in particulate systems is important to a vast array of industries, yet is poorly understood even in the simplest case,conduction through the solid phase. This is due in part to the stress and contact heterogeneities inherent to these systems. Heat conduction in a packet bed of cylinders is investigated both experimentally and computationally. A novel model is developed based on the Discrete Element Method, which not only sheds light on fundamental issues in heat conduction in particles, but also provides a valuable test bed for existing theories. By explicitly modeling individual particles within the bulk material, bed heterogeneities are directly included, and dynamic temperature distributions are obtained at the particle level. Comparison with experiments shows that this model yields a quantitatively accurate temperature field without the need for adjustable parameters or detailed microstructural information. This simple system may also provide insight into such phenomena as reactor hot spot formation and spontaneous combustion of bulk reactive materials. [source] A Co-Simulation Approach for the 3D Dynamic Simulation of Vehicles Considering Sloshing in Cargo and Fuel TanksPROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2009Florian Fleissner The sloshing of liquids in cargo and fuel tanks mounted on vehicles can have a significant influence on the vehicle's driving dynamics and stability. To evaluate and optimize the quality of tank designs, we propose a co-simulation approach that consists of a coupled multibody system simulation for the vehicle and a Discrete Element Method and Smoothed Particle Hydrodynamics simulation for the sloshing cargo. This approach is beneficial especially for the simulation of fluid cargos, as Smoothed Particle Hydrodynamics does not require additional models to track and reconstruct free fluid surfaces. By means of dynamic 3D simulations of a double lane change maneuvers we compare the two different cargo models and demonstrate the viability of the co-simulation approach. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Flat boundaries and their effect on sand testingINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 8 2010G. Marketos Abstract A study of the effect of the use of flat boundaries on the stressing of a sample of an idealized granular material with no applied shear is presented. Discrete element method (DEM) data of 1D compression were analysed and the local strain field inside the sample was investigated as the sample was stressed. A best-fit strain was seen to best describe the material behaviour free from boundary effects. The individual particle displacements were probed, providing insight into the behaviour of particles adjacent to the boundaries. In addition, the porosity and force distribution inside the sample were observed, allowing for estimates of the width of a boundary region to be made. This region, non-representative of far-field material behaviour, will affect the behaviour of a granular sample in DEM or laboratory tests, with local porosity differences leading to a change in the transport properties of the sample, and force distribution changes leading to a bias in the location of grain cracking or crushing events for sufficiently high stress levels. Nevertheless, the largest effect of the boundary region was a severe underestimation of the stiffness of a granular material. Copyright © 2009 John Wiley & Sons, Ltd. [source] Discrete element method for modelling solid and particulate materialsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 4 2007Federico A. Tavarez Abstract The discrete element method (DEM) is developed in this study as a general and robust technique for unified two-dimensional modelling of the mechanical behaviour of solid and particulate materials, including the transition from solid phase to particulate phase. Inter-element parameters (contact stiffnesses and failure criteria) are theoretically established as functions of element size and commonly accepted material parameters including Young's modulus, Poisson's ratio, ultimate tensile strength, and fracture toughness. A main feature of such an approach is that it promises to provide convergence with refinement of a DEM discretization. Regarding contact failure, an energy criterion based on the material's ultimate tensile strength and fracture toughness is developed to limit the maximum contact forces and inter-element relative displacement. This paper also addresses the issue of numerical stability in DEM computations and provides a theoretical method for the determination of a stable time-step. The method developed herein is validated by modelling several test problems having analytic solutions and results show that indeed convergence is obtained. Moreover, a very good agreement with the theoretical results is obtained in both elastic behaviour and fracture. An example application of the method to high-speed penetration of a concrete beam is also given. Copyright © 2006 John Wiley & Sons, Ltd. [source] On the capillary stress tensor in wet granular materialsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 10 2009L. Scholtès Abstract This paper presents a micromechanical study of unsaturated granular media in the pendular regime, based on numerical experiments using the discrete element method, compared with a microstructural elastoplastic model. Water effects are taken into account by adding capillary menisci at contacts and their consequences in terms of force and water volume are studied. Simulations of triaxial compression tests are used to investigate both macro and micro-effects of a partial saturation. The results provided by the two methods appear to be in good agreement, reproducing the major trends of a partially saturated granular assembly, such as the increase in the shear strength and the hardening with suction. Moreover, a capillary stress tensor is exhibited from capillary forces by using homogenization techniques. Both macroscopic and microscopic considerations emphasize an induced anisotropy of the capillary stress tensor in relation with the pore fluid distribution inside the material. Insofar as the tensorial nature of this fluid fabric implies shear effects on the solid phase associated with suction, a comparison has been made with the standard equivalent pore pressure assumption. It is shown that water effects induce microstructural phenomena that cannot be considered at the macro level, particularly when dealing with material history. Thus, the study points out that unsaturated soil stress definitions should include, besides the macroscopic stresses such as the total stress, the microscopic interparticle stresses such as the ones resulting from capillary forces, in order to interpret more precisely the implications of the pore fluid on the mechanical behaviour of granular materials. Copyright © 2009 John Wiley & Sons, Ltd. [source] Influence of size on the constitutive equations of concrete or rock dowelsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 15 2008Letícia Fleck Fadel Miguel Abstract The numerical fracture analysis of non-homogeneous rock or concrete dowels subjected to shear and compression is described in detail. The method of analysis allows the consideration of scale and rate effects due to material non-homogeneity and fracture. The proposed approach is verified by comparing numerical predictions with experimental results reported in the literature for a series of small rock samples, since experimental evidence for large bodies is not yet available (2007). Results generated by Monte Carlo simulation using the so-called discrete element method to model the dowels suggest that a simple three parameters law can be used to predict the relationship between tangential stress at the base and lateral distortion. It is observed that the larger the size of the cubes, the smaller both the peak tangential stress and the rupture distortion. Size effects are also evaluated in samples with vertical restraint. The influence of loading rate is likewise numerically assessed for two sample sizes. The effect is compatible with experimental evidence available for concrete using small samples. Copyright © 2008 John Wiley & Sons, Ltd. [source] Numerical studies of shear banding in interface shear tests using a new strain calculation method,INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 12 2007Jianfeng Wang Abstract Strain localization is closely associated with the stress,strain behaviour of an interphase system subject to quasi-static direct interface shear, especially after peak stress state is reached. This behaviour is important because it is closely related to deformations experienced by geotechnical composite structures. This paper presents a study using two-dimensional discrete element method (DEM) simulations on the strain localization of an idealized interphase system composed of densely packed spherical particles in contact with rough manufactured surfaces. The manufactured surface is made up of regular or irregular triangular asperities with varying slopes. A new simple method of strain calculation is used in this study to generate strain field inside a simulated direct interface shear box. This method accounts for particle rotation and captures strain localization features at high resolution. Results show that strain localization begins with the onset of non-linear stress,strain behaviour. A distinct but discontinuous shear band emerges above the rough surface just before the peak stress state, which becomes more expansive and coherent with post-peak strain softening. It is found that the shear bands developed by surfaces with smaller roughness are much thinner than those developed by surfaces with greater roughness. The maximum thickness of the intense shear zone is observed to be about 8,10 median particle diameters. The shear band orientations, which are mainly dominated by the rough boundary surface, are parallel with the zero extension direction, which are horizontally oriented. Published in 2007 by John Wiley & Sons, Ltd. [source] Discrete element modelling of deep penetration in granular soilsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 4 2006M. J. Jiang Abstract This paper presents a numerical study on deep penetration mechanisms in granular materials with the focus on the effect of soil,penetrometer interface friction. A two-dimensional discrete element method has been used to carry out simulation of deep penetration tests on a granular ground that is under an amplified gravity with a K0 lateral stress boundary. The numerical results show that the deep penetration makes the soil near the penetrometer move in a complex displacement path, undergo an evident loading and unloading process, and a rotation of principal stresses as large as 180°. In addition, the penetration leads to significant changes in displacement and velocity fields as well as the magnitude and direction of stresses. In general, during the whole penetration process, the granular ground undergoes several kinds of failure mechanisms in sequence, and the soil of large deformation may reach a stress state slightly over the strength envelope obtained from conventional compression tests. Soil,penetrometer interface friction has clear effects on the actual penetration mechanisms. Copyright © 2005 John Wiley & Sons, Ltd. [source] Influence of particle shape and angularity on the behaviour of granular materials: a numerical analysisINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 14 2003C. Nouguier-Lehon Abstract This paper analyses the influence of grain shape and angularity on the behaviour of granular materials from a two-dimensional analysis by means of a discrete element method (Contact Dynamics). Different shapes of grains have been studied (circular, isotropic polygonal and elongated polygonal shapes) as well as different initial states (density) and directions of loading with respect to the initial fabric. Simulations of biaxial tests clearly show that the behaviour of samples with isotropic particles can be dissociated from that of samples with anisotropic particles. Indeed, for isotropic particles, angularity just tends to strengthen the behaviour of samples and slow down either local or global phenomena. One of the main results concerns the existence of a critical state for isotropic grains characterized by an angle of friction at the critical state, a critical void ratio and also a critical anisotropy. This critical state seems meaningless for elongated grains and the behaviour of samples generated with such particles is highly dependent on the direction of loading with respect to the initial fabric. The study of local variables related to fabric and particle orientation gives more information. In particular, the coincidence of the principal axes of the fabric tensor with those of the stress tensor is sudden for isotropic particles. On the contrary, this process is gradually initiated for elongated particles. Copyright © 2003 John Wiley & Sons, Ltd. [source] Micro-mechanical simulation of geotechnical problems using massively parallel computersINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 14 2003David W. Washington Abstract This paper demonstrates that the architecture of a massively parallel computer can be adapted for micro-mechanical simulations of a Geotechnical problem. The Discrete Element Method was used on a massively parallel supercomputer to simulate Geotechnical boundary value problems. For the demonstration, a triaxial test was simulated using an algorithm titled ,TRUBAL for Parallel Machines (TPM)' based on the discrete element method (DEM). In this trial demonstration, the inherent parallelism within DEM algorithm is shown. Then a comparison is made between the parallel algorithm (TPM) and the serial algorithm (TRUBAL) to show the benefits of this research. TPM showed substantial improvement in performance with increasing number of processors when compared with TRUBAL using single processor. Copyright © 2003 John Wiley & Sons, Ltd. [source] A micromechanical study of rolling and sliding contacts in assemblies of oval granulesINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 5 2003Hossein M. Shodja Abstract The evolution of the microstructure of an assembly of cohesionless granular materials with associated pores, which carry the overall applied stresses through frictional contacts is a complex phenomenon. The macroscopic flow of such materials take place by the virtue of the relative rolling and sliding of the grains on the micro-scale. A new discrete element method for biaxial compression simulations of random assemblies of oval particles with mixed sizes is introduced. During the course of deformation, the new positions of the grains are determined by employing the static equilibrium equations. A key aspect of the method is that, it is formulated for ellipse cross-sectional particles, hence desirable inherent anisotropies are possible. A robust algorithm for the determination of the contact points between neighbouring grains is given. Employing the present methodology, many aspects of the behaviour of two-dimensional assemblies of oval cross-sectional rods have been successfully addressed. The effects of initial void ratio, interparticle friction angle, aspect ratio, and bedding angle on the rolling and sliding contacts are examined. The distribution of normals to the rolling and sliding contacts have different patterns and are concentrated along directions, which are approximately perpendicular to one another. On the other hand, the distribution of all contact normals (combined rolling and sliding) are close to that of rolling contacts, which confirm that rolling is the dominant mechanism. This phenomenon becomes more pronounced for higher intergranular friction angle. Characteristics of the rolling and sliding contacts are also discussed in the context of the force angle, which is the inclination of contact force with respect to the contact normal. Copyright © 2003 John Wiley & Sons, Ltd. [source] A new approach to detect the contact of two-dimensional elliptical particlesINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 15 2001Algis D, iugys Abstract The objective of this paper is to introduce a new algorithm to calculate analytically the overlap of two-dimensional ellipses. The algorithm may be applied for the direct numerical simulation of granular material dynamics by the discrete element method (DEM). The stability of the algorithm is analysed. Moreover, optimization for possible iterative methods is dealt with. Copyright © 2001 John Wiley & Sons, Ltd. [source] An experimental method for determining the effects of strain gradients in a granular materialINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 8 2003Matthew R. Kuhn Abstract The paper presents an algorithm for use with the discrete element method to study possible strain-gradient effects in granular materials. The algorithm produces an intentionally non-uniform displacement pattern by applying external (body) forces to the particles within a simulated granular assembly. The paper describes a method for adjusting the external forces to attain the intended gross displacement pattern, but while allowing individual particles to be in equilibrium among neighbouring particles. The performance of the algorithm is tested in an example of quasi-static deformation, and the algorithm's performance is measured in three respects. The algorithm is shown to enforce the intended displacement pattern, to allow particles to equilibrate among neighbouring particles, and to produce a smooth distribution of the external forces among particles. Copyright © 2003 John Wiley & Sons, Ltd. [source] Parallel load-balanced simulation for short-range interaction particle methods with hierarchical particle grouping based on orthogonal recursive bisectionINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 4 2008Florian Fleissner Abstract We describe an efficient load-balancing algorithm for parallel simulations of particle-based discretization methods such as the discrete element method or smoothed particle hydrodynamics. Our approach is based on an orthogonal recursive bisection of the simulation domain that is the basis for recursive particle grouping and assignment of particle groups to the parallel processors. Particle grouping is carried out based on sampled discrete particle distribution functions. For interaction detection and computation, which is the core part of particle simulations, we employ a hierarchical pruning algorithm for an efficient exclusion of non-interacting particles via the detection of non-overlapping bounding boxes. Load balancing is based on a hierarchical PI-controller approach, where the differences of processor per time step waiting times serve as controller input. Copyright © 2007 John Wiley & Sons, Ltd. [source] Numerical simulation of granular materials by an improved discrete element methodINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 5 2005J. Fortin Abstract In this paper, we present an improved discrete element method based on the non-smooth contact dynamics and the bi-potential concept. The energy dissipated during the collisions is taken into account by means of restitution coefficients. The interaction between particles is modelled by Coulomb unilateral contact law with dry friction which is typically non-associated: during the contact, the sliding vector is not normal to the friction cone. The main feature of our algorithm is to overcome this difficulty by means of the bi-potential theory. It leads to an easy implement predictor,corrector scheme involving just an orthogonal projection onto the friction cone. Moreover the convergence test is based on an error estimator in constitutive law using the corner stone inequality of the bipotential. Then we present numerical simulations which show the robustness of our algorithm and the various possibilities of the software ,MULTICOR' developed with this approach. Copyright © 2004 John Wiley & Sons, Ltd. [source] Discrete element simulation of free flowing grains in a four-bladed mixerAICHE JOURNAL, Issue 8 2009Brenda Remy Abstract Numerical simulations of granular flow in a cylindrical vessel agitated by a four-blade impeller were performed using the discrete element method. Velocity, density, and stress profiles within the mixer displayed a periodic behavior with a fluctuation frequency equal to that of the blade rotation. Blade orientation was found to affect flow patterns and mixing kinetics. For an obtuse blade pitch orientation, a three-dimensional recirculation zone develops in-front of the blade due to formation of heaps where the blades are present. This flow pattern promotes vertical and radial mixing. No recirculation zone was observed when the blade orientation was changed to an acute blade pitch. The system's frictional characteristics are shown to strongly influence the granular behavior within the mixer. At low friction coefficients, the 3-D recirculation in front of the obtuse blade is not present reducing convective mixing. Higher friction coefficients lead to an increase in granular temperature which is associated with an increase in diffusive mixing. Normal and shear stresses were found to vary with mixer height with maximum values near the bottom plate. Additionally, a strong dependence between the magnitude of the shear stresses and the friction coefficient of the particles was found. The stress tensor characteristics indicate that the granular flow in our simulations occurs in the quasi-static regime. At the same time, the averaged pressure was found to vary linearly with bed height and could be predicted by a simple hydrostatic approximation. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] A coupled DEM/CFD analysis of the effect of air on powder flow during die fillingAICHE JOURNAL, Issue 1 2009Y. Guo Abstract Die filling from a stationary shoe in a vacuum and in the presence of air was numerically analyzed using an Eulerian-Lagrangian model, which employs a discrete element method (DEM) for the particles and computational fluid dynamics (CFD) for the air with a two-way air-particle interaction coupling term. Monodisperse and polydisperse powder systems have been simulated to explore the effect of the presence of air on the die filling process. For die filling with monodisperse powders, the influences of particle size and density on the flow behavior were explored. The numerical simulations revealed that the presence of air has a significant impact on the powder flow behavior, especially for systems with smaller and/or lighter particles. Flow has been characterized in terms of a dimensionless mass flow rate, and it has been shown that for die filling in a vacuum this is constant. The flow characteristics for die filling in air can be classified into two regimes. There is an air-inert regime in which the particle size and density are sufficiently large that the effect of air flow becomes negligible, and the dimensionless mass flow rate is essentially identical to that obtained for die filling in a vacuum. There is also an air-sensitive regime, for smaller particle sizes and lower particle densities, in which the dimensionless mass flow rate increases as the particle size and density increase. The effects of particle-size distribution and adhesion on the flow behavior have also been investigated. It was found that, in a vacuum, the dimensionless mass flow rate for polydisperse systems is nearly identical to that for monodisperse systems. In the presence of air, a lower dimensionless mass flow rate is obtained for polydisperse systems compared to monodisperse systems, demonstrating that air effects become more significant. Furthermore, it has been shown that, as expected, the dimensionless mass flow rate decreases as the surface energy increases (i.e., for more cohesive powders). © 2008 American Institute of Chemical Engineers AIChE J, 2009 [source] Hybrid DEM-compartment modeling approach for granular mixingAICHE JOURNAL, Issue 1 2007Patricia M. Portillo Abstract A new hybrid approach to model powder mixing based on the use of discrete element method (DEM) and compartment modeling is presented. The main motivation behind the proposed approach is to reduce the computational expense of modeling powder mixing by partitioning the mixing system into high shear areas that are modeled using detailed DEM simulations, whereas the remaining process is simulated using stochastic models. The approach can, thus, be used to model complex geometries, as well as a large number of particles that is typically unfeasible with the existing approaches. The results of a horizontal convective mixing vessel are used to illustrate the applicability and efficiency of the proposed approach. © 2006 American Institute of Chemical Engineers AIChE J 2007 [source] Investigation of Fluid and Coarse-Particle Dynamics in a Two-Dimensional Spouted BedCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 9 2004T. Swasdisevi Abstract The aerodynamics of particles and gas flow in a two-dimensional spouted bed (2DSB) with draft plates is investigated with the aid of the discrete element method. The geometry of the 2DSB with draft plates is set as close as possible to the experimental apparatus of Kudra [1] and Kalwar [2]. The physical properties of the coarse particles are similar to those of shelled corn. The calculated minimum spouting velocity and pressure drop agree well with the correlations of Kudra [1] and Kalwar [2]. In the spout region, the particle vertical velocities are found to decrease as the height increases. The fluid velocity in the downcomer region decreases as the superficial gas velocity increases. The particle circulation rate increases when the friction coefficient decreases or the separation height increases. At the minimum spouting velocity, the bed height does not affect the particle circulation rate in the 2DSB with draft plates. The draft plates not only reduce the minimum spouting velocity and pressure drop but also increase the maximum spoutable bed height. The effect of taking out the draft plates on the spouting phenomenon is investigated and the effect of putting in a deflector on the possible breakage of the particles is also estimated. [source] Network models for capillary porous media: application to drying technologyCHEMIE-INGENIEUR-TECHNIK (CIT), Issue 6 2010T. Metzger Jun.-Prof. Abstract Network models offer an efficient pore-scale approach to investigate transport in partially saturated porous materials and are particularly suited to study capillarity. Drying is a prime model application since it involves a range of physical effects: capillary pumping, viscous liquid flow, phase transition, vapor diffusion, heat transfer, but also cracks and shrinkage. This review article gives an introduction to this modern technique addressing required model input, sketching important elements of the computational algorithm and commenting on the nature of simulation results. For the case of drying, it is illustrated how network models can help analyze the influence of pore structure on process kinetics and gain a deeper understanding of the role of individual transport phenomena. Finally, a combination of pore network model and discrete element method is presented, extending the application range to mechanical effects caused by capillary forces. [source] |