Home About us Contact | |||
Disc Structure (disc + structure)
Selected AbstractsDisc structure function and its potential for repairINTERNATIONAL JOURNAL OF RHEUMATIC DISEASES, Issue 1 2002J. Melrose The intervertebral disc (IVD) is the largest predominantly avascular, aneural, alymphatic structure of the human body. It provides articulation between adjoining vertebral bodies and also acts as a weight-bearing cushion dissipating axially applied spinal loads. The IVD is composed of an outer collagen-rich annulus fibrosus (AF) and a central proteoglycan (PG)-rich nucleus pulposus (NP). Superior and inferior cartilaginous endplates (CEPs), thin layers of hyaline-like cartilage, cover the ends of the vertebral bodies. The AF is composed of concentric layers (lamellae) which contain variable proportions of type I and II collagen, this tissue has high tensile strength. The NP in contrast is a gelatinous PG-rich tissue which provides weight-bearing properties to the composite disc structure. With the onset of age, cells in the NP progressively die as this tissue becomes depleted of PGs, less hydrated and more fibrous as the disc undergoes an age-dependent fibrocartilaginous transformation. Such age-dependent cellular and matrix changes can decrease the discs' biomechanical competence and trauma can further lead to failure of structural components of the disc. Annular defects are fairly common and include vertebral rim-lesions, concentric (circumferential) annular tears (separation of adjacent annular lamellae) and radial annular tears (clefts which initiate within the NP). While vascular in-growth around annular tears has been noted, evidence from human post-mortem studies indicate they have a limited ability to undergo repair. Several experimental approaches are currently under evaluation for their ability to promote the repair of such annular lesions. These include growth of AF fibrochondrocytes on a resorbable polycaprolactone (PCL) bio-membrane.1 Sheets of fibrochondrocytes lay down type-I collagen and actin stress fibres on PCL. These matrix components are important for the spatial assembly of the collagenous lamella during annular development and correct phenotypic expression of cells in biomatrices.1 An alternative approach employs preparation of tissue engineered IVDs where AF and NP cells are separately cultured in polyglycolic acid and sodium alginate biomatrices, either separately or within a manifold designed to reproduce the required IVD dimensions for its use as a prospective implant device.2 AF and NP cells have also been grown on tissue culture inserts after their recovery from alginate bead culture to form plugs of tissue engineered cartilage.3 A key component in this latter strategy was the stimulation of the high density disc cell cultures with osteogenic protein-1 (OP-1) 200 ng/mL.3 This resulted in the production of tissue engineered AF and NP plugs with compositions, histochemical characteristics and biomechanical properties approaching those of the native disc tissues.2,3 Such materials hold reat promise in future applications as disc or annular implants. The introduction of appropriate genes into disc cells by gene transduction methodology using adenoviral vectors or ,gene-gun' delivery systems also holds considerable promise for the promotion of disc repair processes.4 Such an approach with the OP-1 gene is particularly appealing.5 The anchoring of discal implants to vertebral bodies has also been evaluated by several approaches. A 3D fabric based polyethylene biocomposite holds much promise as one such anchorage device6 while biological glues used to seal fibrocartilaginous structures such as the AF and meniscus8 following surgical intervention, also hold promise in this area. Several very promising new experimental approaches and strategies are therefore currently under evaluation for the improvement of discal repair. The aforementioned IVD defects are a common cause of disc failure and sites of increased nerve in-growth in symptomatic IVDs in man and are thus often sources of sciatic-type pain. Annular defects such as those described above have formerly been considered incapable of undergoing spontaneous repair thus a clear need exists for interventions which might improve on their repair. Based on the rapid rate of progress and the examples outlined above one may optimistically suggest that a successful remedy to this troublesome clinical entity will be developed in the not so distant future. References 1JohnsonWEBet al. (2001) Directed cytoskeletal orientation and intervertebral disc cell growth: towards the development of annular repair techniques. Trans Orthop Res Soc26, 894. 2MizunoHet al. (2001) Tissue engineering of a composite intervertebral disc. Trans Orthop Res Soc26, 78. 3MatsumotoTet al. (2001) Formation of transplantable disc shaped tissues by nucleus pulposus and annulus fibrosus cells: biochemical and biomechanical properties. Trans Orthop Res Soc26, 897. 4NishidaKet al. (2000) Potential applications of gene therapy to the treatment of intervertebral disc disorders. Clin Orthop Rel Res379 (Suppl), S234,S241. 5MatsumotoTet al. (2001) Transfer of osteogenic protein-1 gene by gene gun system promotes matrix synthesis in bovine intervertebral disc and articular cartilage cells. Trans Orthop Res Soc26, 30. 6ShikinamiY , Kawarada (1998) Potential application of a triaxial three-dimensional fabric (3-DF) as an implant. Biomaterials19, 617,35. [source] Gas dynamics of the central few parsec region of NGC 1068 fuelled by the evolving nuclear star clusterMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010M. Schartmann ABSTRACT Recently, high-resolution observations with the help of the near-infrared adaptive optics integral field spectrograph Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) at the Very Large Telescope proved the existence of massive and young nuclear star clusters in the centres of a sample of Seyfert galaxies. With the help of three-dimensional high-resolution hydrodynamical simulations with the Pluto code, we follow the evolution of such clusters, especially focusing on stellar mass loss feeding gas into the ambient interstellar medium and driving turbulence. This leads to a vertically wide distributed clumpy or filamentary inflow of gas on large scales (tens of parsec), whereas a turbulent and very dense disc builds up on the parsec scale. In order to capture the relevant physics in the inner region, we treat this disc separately by viscously evolving the radial surface density distribution. This enables us to link the tens of parsec-scale region (accessible via SINFONI observations) to the (sub-)parsec-scale region (observable with the mid-infrared interferometer instrument and via water maser emission). Thereby, this procedure provides us with an ideal testbed for data comparison. In this work, we concentrate on the effects of a parametrized turbulent viscosity to generate angular momentum and mass transfer in the disc and additionally take star formation into account. Most of the input parameters are constrained by available observations of the nearby Seyfert 2 galaxy NGC 1068, and we discuss parameter studies for the free parameters. At the current age of its nuclear starburst of 250 Myr, our simulations yield disc sizes of the order of 0.8,0.9 pc, gas masses of 106 M, and mass transfer rates of 0.025 M, yr,1 through the inner rim of the disc. This shows that our large-scale torus model is able to approximately account for the disc size as inferred from interferometric observations in the mid-infrared and compares well to the extent and mass of a rotating disc structure as inferred from water maser observations. Several other observational constraints are discussed as well. [source] Discovery of large-scale methanol and hydroxyl maser filaments in W3(OH)MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006L. Harvey-Smith ABSTRACT Images of the 6.7-GHz methanol maser emission from W3(OH) made at 50- and 100-mas angular resolution with the Multi-Element Radio-Linked Interferometer Network (MERLIN) are presented. The masers lie across the western face of the ultracompact H ii region in extended filaments which may trace large-scale shocks. There is a complex interrelation between the 6.7-GHz methanol masers and hydroxyl (OH) masers at 1.7 and 4.7 GHz. Together the two species trace an extended filamentary structure that stretches at least 3100 au across the face of the ultracompact H ii region. The dominant 6.7-GHz methanol emission coincides with the radio continuum peak and is populated by masers with broad spectral lines. The 6.7-GHz methanol emission is elongated at position angle 50° with a strong velocity gradient, and bears many similarities to the methanol maser disc structure reported in NGC 7538. It is surrounded by arcs of ground state OH masers at 1.7 GHz and highly excited OH masers at 13.44 GHz, some of which have the brightest methanol masers at their focus. We suggest that this region hosts the excitation centre for the ultracompact H ii region. [source] Superhumps, magnetic fields and the mass ratio in AM Canum VenaticorumMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2003K. J. Pearson ABSTRACT We show that the observed K velocities and periodicities of AM CVn can be reconciled given a mass ratio q, 0.22 and a secondary star with a modest magnetic field of surface strength B, 1 T. We see that the new mass ratio implies that the secondary is most likely semidegenerate. The effect of the field on the accretion disc structure is examined. The theory of precessing discs and resonant orbits is generalized to encompass higher order resonances than 3 : 2 and shown to retain consistency with the new mass ratio. [source] ECHA J0843.3,7905: Discovery of an ,old' classical T Tauri star in the , Chamaeleontis clusterMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2002Warrick A. Lawson A limited-area survey of the , Chamaeleontis cluster has identified two new late-type members. The more significant of these is ECHA (=IRAS , a slowly rotating M2 classical T Tauri (CTT) star with a spectrum dominated by Balmer emission. At a distance of 97 pc and cluster age of ,9 Myr, the star is a nearby rare example of an ,old' CTT star and promises to be a rewarding laboratory for the study of disc structure and evolution in pre-main sequence (PMS) stars. The other new member is the M4 weak-lined T Tauri (WTT) star ECHA , which is the lowest mass primary known in the cluster. [source] The Beijing Eye StudyACTA OPHTHALMOLOGICA, Issue 3 2009Jost B. Jonas Abstract. Purpose:, This review presents and summarizes the findings of the Beijing Eye Study. Methods:, The Beijing Eye Study is a population-based study which included 4439 of 5324 subjects (aged , 40 years) who were initially examined in 2001. The study was repeated in 2006, when 3251 (73.2% of 4439, or 61.1% of 5324) of the original subjects participated. Participants underwent a series of examinations including: refractometry; pneumotonometry; biomicroscopy assisted by slit-lamp; optical coherence tomography of the anterior segment; photography of the cornea, lens, optic disc, macula and fundus; blood sampling for laboratory tests; blood pressure measurements, and determinations of anthropomorphic parameters. They were also asked to complete a questionnaire which included questions on socioeconomic parameters, and awareness and treatment of ocular and general diseases. Results:, We present normative data for refractive error, anterior segment measurements, intraocular pressure and optic disc structures and their associations, frequency and causes of visual impairment, blindness and visual field defects, prevalences of trachoma, pterygia, open-angle glaucoma and angle-closure glaucoma, cortical, nuclear and posterior subcapsular cataract, age-related macular degeneration, retinal vein occlusions, diabetes mellitus and diabetic retinopathy, myelinated nerve fibres, and retinitis pigmentosa, and associated and risk factors. Discussion:, These data may be helpful for dealing with public health issues in China and for assessing associated and risk factors of ocular and general diseases in general. [source] |