Disc Evolution (disc + evolution)

Distribution by Scientific Domains


Selected Abstracts


Demographics of transition objects

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2007
Joan R. Najita
ABSTRACT The unusual properties of transition objects (young stars with an optically thin inner disc surrounded by an optically thick outer disc) suggest that significant disc evolution has occurred in these systems. We explore the nature of these systems by examining their demographics, specifically their stellar accretion rates and disc masses Mdisc compared to those of accreting T Tauri stars of comparable age. We find that the transition objects in Taurus occupy a restricted region of the versus Mdisc plane. Compared to non-transition single stars in Taurus, they have stellar accretion rates that are typically ,10 times lower at the same disc mass and median disc masses approximately four times larger. These properties are anticipated by several proposed planet formation theories and suggest that the formation of Jovian mass planets may play a significant role in explaining the origin of at least some transition objects. Considering transition objects as a distinct demographic group among accreting T Tauri stars leads to a tighter relationship between disc masses and stellar accretion rates, with a slope between the two quantities that is close to the value of unity expected in simple theories of disc accretion. [source]


XMM,Newton observations of UW CrB: detection of X-ray bursts and evidence for accretion disc evolution

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2005
Pasi Hakala
ABSTRACT UW CrB (MS 1603+2600) is a peculiar short-period X-ray binary that exhibits extraordinary optical behaviour. The shape of the optical light curve of the system changes drastically from night to night, without any changes in overall brightness. Here we report X-ray observations of UW CrB obtained with XMM,Newton. We find evidence for several X-ray bursts, confirming a neutron star primary. This considerably strengthens the case that UW CrB is an accretion disc corona system located at a distance of at least 5,7 kpc (3,5 kpc above the Galactic plane). The X-ray and Optical Monitor (ultraviolet,optical) light curves show remarkable shape variation from one observing run to another, which we suggest are due to large-scale variations in the accretion disc shape resulting from a warp that periodically obscures the optical and soft X-ray emission. This is also supported by the changes in phase-resolved X-ray spectra. [source]


Testing the locality of transport in self-gravitating accretion discs

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2004
G. Lodato
ABSTRACT In this paper, we examine the issue of characterizing the transport associated with gravitational instabilities in relatively cold discs, discussing in particular the conditions under which it can be described within a local, viscous framework. We present the results of global, three-dimensional, smoothed particle hydrodynamics simulations of self-gravitating accretion discs, in which the disc is cooled using a simple parametrization for the cooling function. Our simulations show that the disc settles in a ,self-regulated' state, where the axisymmetric stability parameter Q, 1 and where transport and energy dissipation are dominated by self-gravity. We have computed the gravitational stress tensor and compared our results with expectations based on a local theory of transport. We find that, as long as the disc mass is smaller than 0.25M, and the aspect ratio H/R, 0.1, transport is determined locally, thus allowing for a viscous treatment of the disc evolution. [source]


On the angular momentum transport due to vertical convection in accretion discs

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY: LETTERS (ELECTRONIC), Issue 1 2010
Geoffroy Lesur
ABSTRACT The mechanism of angular momentum transport in accretion discs has long been debated. Although the magnetorotational instability appears to be a promising process, poorly ionized regions of accretion discs may not undergo this instability. In this Letter, we revisit the possibility of transporting angular momentum by turbulent thermal convection. Using high-resolution spectral methods, we show that strongly turbulent convection can drive outward angular momentum transport at a rate that is, under certain conditions, compatible with observations of discs. We find, however, that the angular momentum transport is always much weaker than the vertical heat transport. These results indicate that convection might be another way to explain global disc evolution, provided that a sufficiently unstable vertical temperature profile can be maintained. [source]