Home About us Contact | |||
Dissipation Function (dissipation + function)
Selected AbstractsA finite element formulation for thermoelastic damping analysisINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 6 2009Enrico Serra Abstract We present a finite element formulation based on a weak form of the boundary value problem for fully coupled thermoelasticity. The thermoelastic damping is calculated from the irreversible flow of entropy due to the thermal fluxes that have originated from the volumetric strain variations. Within our weak formulation we define a dissipation function that can be integrated over an oscillation period to evaluate the thermoelastic damping. We show the physical meaning of this dissipation function in the framework of the well-known Biot's variational principle of thermoelasticity. The coupled finite element equations are derived by considering harmonic small variations of displacement and temperature with respect to the thermodynamic equilibrium state. In the finite element formulation two elements are considered: the first is a new 8-node thermoelastic element based on the Reissner,Mindlin plate theory, which can be used for modeling thin or moderately thick structures, while the second is a standard three-dimensional 20-node iso-parametric thermoelastic element, which is suitable to model massive structures. For the 8-node element the dissipation along the plate thickness has been taken into account by introducing a through-the-thickness dependence of the temperature shape function. With this assumption the unknowns and the computational effort are minimized. Comparisons with analytical results for thin beams are shown to illustrate the performances of those coupled-field elements. Copyright © 2008 John Wiley & Sons, Ltd. [source] Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulationINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 11 2002Christian Miehe Abstract The paper investigates computational procedures for the treatment of a homogenized macro-continuum with locally attached micro-structures of inelastic constituents undergoing small strains. The point of departure is a general internal variable formulation that determines the inelastic response of the constituents of a typical micro-structure as a generalized standard medium in terms of an energy storage and a dissipation function. Consistent with this type of inelasticity we develop a new incremental variational formulation of the local constitutive response where a quasi-hyperelastic micro-stress potential is obtained from a local minimization problem with respect to the internal variables. It is shown that this local minimization problem determines the internal state of the material for finite increments of time. We specify the local variational formulation for a setting of smooth single-surface inelasticity and discuss its numerical solution based on a time discretization of the internal variables. The existence of the quasi-hyperelastic stress potential allows the extension of homogenization approaches of elasticity to the incremental setting of inelasticity. Focusing on macro-strain-driven micro-structures, we develop a new incremental variational formulation of the global homogenization problem where a quasi-hyperelastic macro-stress potential is obtained from a global minimization problem with respect to the fine-scale displacement fluctuation field. It is shown that this global minimization problem determines the state of the micro-structure for finite increments of time. We consider three different settings of the global variational problem for prescribed linear displacements, periodic fluctuations and constant stresses on the boundary of the micro-structure and discuss their numerical solutions based on a spatial discretization of the fine-scale displacement fluctuation field. The performance of the proposed methods is demonstrated for the model problem of von Mises-type elasto-visco-plasticity of the constituents and applied to a comparative study of micro-to-macro transitions of inelastic composites. Copyright © 2002 John Wiley & Sons, Ltd. [source] Theory and Numerics of Rate-Dependent Incremental Variational Formulations in FerroelectricityPROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2008Daniele Rosato This paper is concerned with macroscopic continuous and discrete variational formulations for domain switching effects at small strains, which occur in ferroelectric ceramics. The developed new three,dimensional model is thermodynamically,consistent and determined by two scalar,valued functions: the energy storage function (Helmholtz free energy) and the dissipation function, which is in particular rate,dependent. The constitutive model successfully reproduces the ferroelastic and the ferroelectric hysteresis as well as the butterfly hysteresis for ferroelectric ceramics. The rate,dependent character of the dissipation function allows us also to reproduce the experimentally observed rate dependency of the above mentioned hysteresis phenomena. An important aspect is the numerical implementation of the coupled problem. The discretization of the two,field problem appears, as a consequence of the proposed incremental variational principle, in a symmetric format. The performance of the proposed methods is demonstrated by means of a benchmark problem. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementationsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 10 2010C. Miehe Abstract The computational modeling of failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in situations with complex crack topologies. This can be overcome by a diffusive crack modeling based on the introduction of a crack phase-field. In this paper, we outline a thermodynamically consistent framework for phase-field models of crack propagation in elastic solids, develop incremental variational principles and consider their numerical implementations by multi-field finite element methods. We start our investigation with an intuitive and descriptive derivation of a regularized crack surface functional that ,-converges for vanishing length-scale parameter to a sharp crack topology functional. This functional provides the basis for the definition of suitable convex dissipation functions that govern the evolution of the crack phase-field. Here, we propose alternative rate-independent and viscous over-force models that ensure the local growth of the phase-field. Next, we define an energy storage function whose positive tensile part degrades with increasing phase-field. With these constitutive functionals at hand, we derive the coupled balances of quasi-static stress equilibrium and gradient-type phase-field evolution in the solid from the argument of virtual power. Here, we consider a canonical two-field setting for rate-independent response and a time-regularized three-field formulation with viscous over-force response. It is then shown that these balances follow as the Euler equations of incremental variational principles that govern the multi-field problems. These principles make the proposed formulation extremely compact and provide a perfect base for the finite element implementation, including features such as the symmetry of the monolithic tangent matrices. We demonstrate the performance of the proposed phase-field formulations of fracture by means of representative numerical examples. Copyright © 2010 John Wiley & Sons, Ltd. [source] |