Diseased Cells (diseased + cell)

Distribution by Scientific Domains


Selected Abstracts


Structural and functional differences between the promoters of independently expressed killer cell Ig-like receptors

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2005
Bergen, Jeroen van
Abstract Killer Ig-like receptors (KIR) are important for the recognition and elimination of diseased cells by human NK cells. Myeloid leukemia patients given a hematopoietic stem cell transplantation, for example, benefit from KIR-mediated NK alloreactivity directed against the leukemia cells. To establish an effective NK cell repertoire, most KIR genes are expressed stochastically, independently of the others. However, the sequences upstream of the coding regions of these KIR genes are highly homologous to the recently identified KIR3DL1 promoter (91.1,99.6% sequence identity), suggesting that they are regulated by similar if not identical mechanisms of transcriptional activation. We investigated the effects of small sequence differences between the KIR3DL1 promoter and other KIR promoters on transcription factor binding and promoter activity. Surprisingly, electrophoretic mobility shift assays and promoter-reporter assays revealed significant structural and functional differences in the cis-acting elements of these highly homologous KIR promoters, suggesting a key role for transcription factors in independent control of expression of specific KIR loci. Thus, the KIR repertoire may be shaped by a combination of both gene-specific and stochastic mechanisms. [source]


Regenerative medicine in dermatology: biomaterials, tissue engineering, stem cells, gene transfer and beyond

EXPERIMENTAL DERMATOLOGY, Issue 8 2010
Christina Dieckmann
Please cite this paper as: Regenerative medicine in dermatology: biomaterials, tissue engineering, stem cells, gene transfer and beyond. Experimental Dermatology 2010; 19: 697,706. Abstract:, The term ,regenerative medicine' refers to a new and expanding field in biomedical research that focuses on the development of innovative therapies allowing the body to replace, restore and regenerate damaged or diseased cells, tissues and organs. It combines several technological approaches including the use of soluble molecules, biomaterials, tissue engineering, gene therapy, stem cell transplantation and the reprogramming of cell and tissue types. Because of its easy accessibility, skin is becoming an attractive model organ for regenerative medicine. Here, we review recent developments in regenerative medicine and their potential relevance for dermatology with a particular emphasis on biomaterials, tissue engineering, skin substitutes and stem cell-based therapies for skin reconstitution in patients suffering from chronic wounds and extensive burns. [source]


Therapeutic targets in chronic myeloid leukaemia

HEMATOLOGICAL ONCOLOGY, Issue 2 2007
Nicholas B. Heaney
Abstract Chronic myeloid leukaemia (CML) is a clonal disorder of the haemopoietic stem cell arising as a consequence of the formation of the bcr-abl oncogene. The particular molecular basis of this condition has enabled the development of therapies that selectively target diseased cells. The success of the rationally designed first-line therapy imatinib mesylate (IM) is tempered by the problems of disease persistence and resistance. Novel strategies have been identified to take forward therapy in CML and these will be discussed in this review. This work is generated from a review of published literature and contains particular insight into the work performed by our group in this field. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Recent Progress in Biomolecular Engineering

BIOTECHNOLOGY PROGRESS, Issue 1 2000
Dewey D. Y. Ryu
During the next decade or so, there will be significant and impressive advances in biomolecular engineering, especially in our understanding of the biological roles of various biomolecules inside the cell. The advances in high throughput screening technology for discovery of target molecules and the accumulation of functional genomics and proteomics data at accelerating rates will enable us to design and discover novel biomolecules and proteins on a rational basis in diverse areas of pharmaceutical, agricultural, industrial, and environmental applications. As an applied molecular evolution technology, DNA shuffling will play a key role in biomolecular engineering. In contrast to the point mutation techniques, DNA shuffling exchanges large functional domains of sequences to search for the best candidate molecule, thus mimicking and accelerating the process of sexual recombination in the evolution of life. The phage-display system of combinatorial peptide libraries will be extensively exploited to design and create many novel proteins, as a result of the relative ease of screening and identifying desirable proteins. Even though this system has so far been employed mainly in screening the combinatorial antibody libraries, its application will be extended further into the science of protein-receptor or protein-ligand interactions. The bioinformatics for genome and proteome analyses will contribute substantially toward ever more accelerated advances in the pharmaceutical industry. Biomolecular engineering will no doubt become one of the most important scientific disciplines, because it will enable systematic and comprehensive analyses of gene expression patterns in both normal and diseased cells, as well as the discovery of many new high-value molecules. When the functional genomics database, EST and SAGE techniques, microarray technique, and proteome analysis by 2-dimensional gel electrophoresis or capillary electrophoresis in combination with mass spectrometer are all put to good use, biomolecular engineering research will yield new drug discoveries, improved therapies, and significantly improved or new bioprocess technology. With the advances in biomolecular engineering, the rate of finding new high-value peptides or proteins, including antibodies, vaccines, enzymes, and therapeutic peptides, will continue to accelerate. The targets for the rational design of biomolecules will be broad, diverse, and complex, but many application goals can be achieved through the expansion of knowledge based on biomolecules and their roles and functions in cells and tissues. Some engineered biomolecules, including humanized Mab's, have already entered the clinical trials for therapeutic uses. Early results of the trials and their efficacy are positive and encouraging. Among them, Herceptin, a humanized Mab for breast cancer treatment, became the first drug designed by a biomolecular engineering approach and was approved by the FDA. Soon, new therapeutic drugs and high-value biomolecules will be designed and produced by biomolecular engineering for the treatment or prevention of not-so-easily cured diseases such as cancers, genetic diseases, age-related diseases, and other metabolic diseases. Many more industrial enzymes, which will be engineered to confer desirable properties for the process improvement and manufacturing of high-value biomolecular products at a lower production cost, are also anticipated. New metabolites, including novel antibiotics that are active against resistant strains, will also be produced soon by recombinant organisms having de novo engineered biosynthetic pathway enzyme systems. The biomolecular engineering era is here, and many of benefits will be derived from this field of scientific research for years to come if we are willing to put it to good use. [source]