Home About us Contact | |||
Disease Dynamics (disease + dynamics)
Selected AbstractsPrairie dog presence affects occurrence patterns of disease vectors on small mammalsECOGRAPHY, Issue 5 2008R. Jory Brinkerhoff Wildlife disease is recognized as a burgeoning threat to imperiled species and aspects of host and vector community ecology have been shown to have significant effects on disease dynamics. The black-tailed prairie dog is a species of conservation concern that is highly susceptible to plague, a flea-transmitted disease. Prairie dogs (Cynomys) alter the grassland communities in which they exist and have been shown to affect populations of small rodents, which are purported disease reservoirs. To explore potential ecological effects of black-tailed prairie dogs on plague dynamics, we quantified flea occurrence patterns on small mammals in the presence and absence of prairie dogs at 8 study areas across their geographic range. Small mammals sampled from prairie dog colonies showed significantly higher flea prevalence, flea abundance, and relative flea species richness than those sampled from off-colony sites. Successful plague transmission likely is dependent on high prevalence and abundance of fleas that can serve as competent vectors. Prairie dogs may therefore facilitate the maintenance of plague by increasing flea occurrence on potential plague reservoir species. Our data demonstrate the previously unreported ecological influence of prairie dogs on vector species assemblages, which could influence disease dynamics. [source] Seeking a second opinion: uncertainty in disease ecologyECOLOGY LETTERS, Issue 6 2010Brett T. McClintock Ecology Letters (2010) 13: 659,674 Abstract Analytical methods accounting for imperfect detection are often used to facilitate reliable inference in population and community ecology. We contend that similar approaches are needed in disease ecology because these complicated systems are inherently difficult to observe without error. For example, wildlife disease studies often designate individuals, populations, or spatial units to states (e.g., susceptible, infected, post-infected), but the uncertainty associated with these state assignments remains largely ignored or unaccounted for. We demonstrate how recent developments incorporating observation error through repeated sampling extend quite naturally to hierarchical spatial models of disease effects, prevalence, and dynamics in natural systems. A highly pathogenic strain of avian influenza virus in migratory waterfowl and a pathogenic fungus recently implicated in the global loss of amphibian biodiversity are used as motivating examples. Both show that relatively simple modifications to study designs can greatly improve our understanding of complex spatio-temporal disease dynamics by rigorously accounting for uncertainty at each level of the hierarchy. [source] Quality matters: resource quality for hosts and the timing of epidemicsECOLOGY LETTERS, Issue 2 2009Spencer R. Hall Abstract Epidemiologists increasingly realize that species interactions (e.g. selective predation) can determine when epidemics start and end. We hypothesize here that resource quality can also strongly influence disease dynamics: epidemics can be inhibited when resource quality for hosts is too poor and too good. In three lakes, resource quality for the zooplankton host (Daphnia dentifera) was poor when fungal epidemics (Metschnikowia bicuspidata) commenced and increased as epidemics waned. Experiments using variation in algal food showed that resource quality had conflicting effects on underlying epidemiology: high-quality food induced large production of infective propagules (spores) and high birth rate but also reduced transmission. A model then illustrated how these underlying correlations can inhibit the start of epidemics (when spore production/birth rate are too low) but also catalyse their end (when transmission becomes too low). This resource quality mechanism is likely to interface with other ones controlling disease dynamics and warrants closer evaluation. [source] Parasites in food webs: the ultimate missing linksECOLOGY LETTERS, Issue 6 2008Kevin D. Lafferty Abstract Parasitism is the most common consumer strategy among organisms, yet only recently has there been a call for the inclusion of infectious disease agents in food webs. The value of this effort hinges on whether parasites affect food-web properties. Increasing evidence suggests that parasites have the potential to uniquely alter food-web topology in terms of chain length, connectance and robustness. In addition, parasites might affect food-web stability, interaction strength and energy flow. Food-web structure also affects infectious disease dynamics because parasites depend on the ecological networks in which they live. Empirically, incorporating parasites into food webs is straightforward. We may start with existing food webs and add parasites as nodes, or we may try to build food webs around systems for which we already have a good understanding of infectious processes. In the future, perhaps researchers will add parasites while they construct food webs. Less clear is how food-web theory can accommodate parasites. This is a deep and central problem in theoretical biology and applied mathematics. For instance, is representing parasites with complex life cycles as a single node equivalent to representing other species with ontogenetic niche shifts as a single node? Can parasitism fit into fundamental frameworks such as the niche model? Can we integrate infectious disease models into the emerging field of dynamic food-web modelling? Future progress will benefit from interdisciplinary collaborations between ecologists and infectious disease biologists. [source] Negative effects of changing temperature on amphibian immunity under field conditionsFUNCTIONAL ECOLOGY, Issue 5 2006T. R. RAFFEL Summary 1Recent evidence of the important role of emerging diseases in amphibian population declines makes it increasingly important to understand how environmental changes affect amphibian immune systems. 2Temperature-dependent immunity may be particularly important to amphibian disease dynamics, especially in temperate regions. Changes in temperature are expected to cause deviations away from optimal levels of immunity until the immune system can respond. 3To test whether temperature changes cause deviations from optimal immunity under natural conditions, we conducted a seasonal survey of adult Red-Spotted Newts and measured basal levels of several immunological variables. 4We then examined these findings in relation to: (1) the lag hypothesis, which predicts that changes in temperature-dependent immune parameters lag behind short-term temperature changes, and (2) the seasonal acclimation hypothesis, which predicts that immune cell production declines during long-term temperature decreases until amphibians can fully acclimate to winter conditions. 5Our results supported both hypotheses, showing a spring lag effect on lymphocyte levels and an even stronger seasonal acclimation effect on lymphocytes, neutrophils and eosinophils in the autumn. Our findings suggest that temperature variability causes increased susceptibility of amphibians to infection, and they have implications for the emergence of disease and the potential for climate change to exacerbate amphibian decline. [source] Surgical management of hepatolithiasisHPB, Issue 3 2009Sujit Vijay Sakpal Abstract Background:, Globalization and intercontinental migration have not just changed the socioeconomic status of regions, but have also altered disease dynamics across the globe. Hepatolithiasis, although still rare, is becoming increasingly evident in the West because of immigration from the Asia-Pacific region, where the disease prevails in endemic proportions. Such rare but emerging diseases pose a therapeutic challenge to doctors. Methods:, Here, we briefly introduce the topic of hepatolithiasis and describe features of intrahepatic stones, the aetiology of hepatolithiasis and the symptoms and sequelae of the condition. We then provide a comprehensive review of the various management modalities currently in use to treat hepatolithiasis. Conclusions:, In our opinion, and as is evident from the literature, surgery remains the definitive treatment for hepatolithiasis. However, non-surgical procedures such as cholangiography, although limited in their therapeutic capabilities, play a vital role in diagnosis and preoperative evaluation. [source] Comparative study on the consequences of culling badgers (Meles meles) on biometrics, population dynamics and movementJOURNAL OF ANIMAL ECOLOGY, Issue 4 2000F. A. M. Tuyttens 1.,Capture,mark,recapture data were used to describe the process of recovery from a typical badger removal operation (BRO) at North Nibley, Gloucestershire, UK, which was carried out as part of the government's strategy to control bovine tuberculosis. Data on biometrics, demographics and movement from this low-density disturbed population were compared with those of two nearby high-density undisturbed populations (Wytham Woods and Woodchester Park, UK) in order to study fundamental principles of population dynamics and density-dependence. 2.,Badgers moved more between social groups at North Nibley than in the other study areas, particularly in the immediate aftermath of the removal operation. 3.,Recolonization of the vacated habitat occurred in the first instance by young females. 4.,Although in the first year after the BRO no cubs had been reared in any of the culled groups, and although the shortage of sexually mature boars may have limited the reproductive output of sows in the following year, the population took only 3 years to recover to its (already lowered) preremoval density. 5.,Losses from the adult (and cub) population due to mortality or emigration were smaller at North Nibley than at the other sites. 6.,There was much evidence that during 1995 and 1996 density-dependent effects constrained the reproductive output of the high-density populations, and some support for the hypothesis that badgers exhibit the non-linear ,large mammal' type of functional response to density. 7.,Badgers at North Nibley were younger, heavier and in better condition than badgers at Wytham Woods and Woodchester Park. 8.,We argue that the disease dynamics are likely to be different in disturbed compared with undisturbed badger populations, and that this could affect the effectiveness of BROs. [source] Host culling as an adaptive management tool for chronic wasting disease in white-tailed deer: a modelling studyJOURNAL OF APPLIED ECOLOGY, Issue 2 2009Gideon Wasserberg Summary 1Emerging wildlife diseases pose a significant threat to natural and human systems. Because of real or perceived risks of delayed actions, disease management strategies such as culling are often implemented before thorough scientific knowledge of disease dynamics is available. Adaptive management is a valuable approach in addressing the uncertainty and complexity associated with wildlife disease problems and can be facilitated by using a formal model. 2We developed a multi-state computer simulation model using age, sex, infection-stage, and seasonality as a tool for scientific learning and managing chronic wasting disease (CWD) in white-tailed deer Odocoileus virginianus. Our matrix model used disease transmission parameters based on data collected through disease management activities. We used this model to evaluate management issues on density- (DD) and frequency-dependent (FD) transmission, time since disease introduction, and deer culling on the demographics, epizootiology, and management of CWD. 3Both DD and FD models fit the Wisconsin data for a harvested white-tailed deer population, but FD was slightly better. Time since disease introduction was estimated as 36 (95% CI, 24,50) and 188 (41,>200) years for DD and FD transmission, respectively. Deer harvest using intermediate to high non-selective rates can be used to reduce uncertainty between DD and FD transmission and improve our prediction of long-term epidemic patterns and host population impacts. A higher harvest rate allows earlier detection of these differences, but substantially reduces deer abundance. 4Results showed that CWD has spread slowly within Wisconsin deer populations, and therefore, epidemics and disease management are expected to last for decades. Non-hunted deer populations can develop and sustain a high level of infection, generating a substantial risk of disease spread. In contrast, CWD prevalence remains lower in hunted deer populations, but at a higher prevalence the disease competes with recreational hunting to reduce deer abundance. 5Synthesis and applications. Uncertainty about density- or frequency-dependent transmission hinders predictions about the long-term impacts of chronic wasting disease on cervid populations and the development of appropriate management strategies. An adaptive management strategy using computer modelling coupled with experimental management and monitoring can be used to test model predictions, identify the likely mode of disease transmission, and evaluate the risks of alternative management responses. [source] Short-term epidemic dynamics in the Cakile maritima,Alternaria brassicicola host,pathogen associationJOURNAL OF ECOLOGY, Issue 5 2001Peter H. Thrall Summary 1Studies combining within- and among-population processes are crucial for understanding ecological and co-evolutionary dynamics in host,pathogen interactions. We report on work over an 18-month period involving multiple beach populations of the plant Cakile maritima and its fungal pathogen Alternaria brassicicola along the south-east coast of Australia. 2Results from permanent transects replicated on several beaches show that disease incidence and prevalence vary significantly with plant age, class and distance from the sea, as well as time during the season. Plant density is also positively related to disease levels. 3Results from three subregions indicate that disease persistence depends on survival of infected plants behind the foredunes of protected beaches. Population extinction was more likely on beaches with greater wind exposure and sea access, with the latter also related to colonization consistent with the dispersal of Cakile seeds via ocean currents. 4Although disease dynamics during the epidemic were similar across subregions, the severity of the epidemic varied significantly among these areas, suggesting that large-scale environmental factors may influence the timing and development of the epidemic. 5Estimates of synchrony in disease dynamics indicated that populations within a subregion were significantly correlated with respect to epidemic development. There was, however, no evidence for spatial synchrony in disease dynamics based on among-population covariances in disease prevalence and interbeach distances. Populations within a subregion were thus often at quite different phases of the epidemic at any given time. [source] Disease interaction between farmed and wild fish populationsJOURNAL OF FISH BIOLOGY, Issue 2004E. J. Peeler This paper reviews the literature on disease interaction between wild and farmed fish and recommends strategies to reduce the disease risks to both populations. Most, if not all, diseases of farmed fish originate in wild populations. The close contact between farmed and wild fish readily leads to pathogens exchange. Aquaculture creates conditions (e.g. high stocking levels) conducive to pathogen transmission and disease; hence pathogens can overspill back, resulting in high levels of challenge to wild populations. This is exemplified by sea lice infections in farmed Atlantic salmon. Stocking with hatchery reared fish or aquaculture escapees can affect disease dynamics in wild populations. Whirling disease has been spread to many wild rainbow trout populations in the US with the release of hatchery reared stock. The greatest impact of aquaculture on disease in wild populations has resulted from the movement of fish for cultivation. Examples of exotic disease introduction following movement of live fish for aquaculture with serious consequences for wild populations are reviewed. The salmon parasite, Gyrodactylus salaris, has destroyed wild salmon populations in 44 Norwegian rivers. Crayfish plague has wiped out European crayfish over much of Europe. Eels numbers have declined in Europe and infection with the swimbladder nematode Anguillicola crassus has in part been blamed. The impact of disease in farmed fish on wild populations can mitigated. Risk analysis methods need to be refined and applied to live fish movement and new aquacultural developments. Appropriate biosecurity strategies, based on risk assessments, should be developed to reduce pathogen exchange and mitigate the consequences. [source] Estimating the transmission probability of human immunodeficiency virus in injecting drug users in ThailandJOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES C (APPLIED STATISTICS), Issue 1 2001Michael G. Hudgens We estimate the transmission probability for the human immunodeficiency virus from seroconversion data of a cohort of injecting drug users (IDUs) in Thailand. The transmission probability model developed accounts for interval censoring and incorporates each IDU's reported frequency of needle sharing and injecting acts. Using maximum likelihood methods, the per needle sharing act transmission probability estimate between infectious and susceptible IDUs is 0.008. The effects of covariates, disease dynamics, mismeasured exposure information and the uncertainty of the disease prevalence on the transmission probability estimate are considered. [source] Characterization of 14 polymorphic microsatellite markers for the black-tailed prairie dog (Cynomys ludovicianus)MOLECULAR ECOLOGY RESOURCES, Issue 1 2005RYAN T. JONES Abstract We report the development of 14 polymorphic microsatellite markers for the black-tailed prairie dog, Cynomys ludovicianus. The number of alleles per locus ranges from three to 11, and the observed heterozygosity ranges from 0.37500 to 1.0000. These markers will benefit studies of landscape effects on prairie dog migration, disease dynamics, and conservation efforts. [source] JOINTLY-DETERMINED ECOLOGICAL THRESHOLDS AND ECONOMIC TRADE-OFFS IN WILDLIFE DISEASE MANAGEMENTNATURAL RESOURCE MODELING, Issue 4 2007ELI P. FENICHEL ABSTRACT. We investigate wildlife disease management, in a bioeconomic framework, when the wildlife host is valuable and disease transmission is density-dependent. Disease prevalence is reduced in density-dependent models whenever the population is harvested below a host-density threshold a threshold population density below which disease prevalence declines and above which a disease becomes epidemic. In conventional models, the threshold is an exogenous function of disease parameters. We consider this case and find a steady state with positive disease prevalence to be optimal. Next, we consider a case in which disease dynamics are affected by both population controls and changes in human-environmental interactions. The host-density threshold is endogenous in this case. That is, the manager does not simply manage the population relative to the threshold, but rather manages both the population and the threshold. The optimal threshold depends on the economic and ecological trade-offs arising from the jointly-determined system. Accounting for this endogene-ity can lead to reduced disease prevalence rates and higher population levels. Additionally, we show that ecological parameters that may be unimportant in conventional models that do not account for the endogeneity of the host-density threshold are potentially important when host density threshold is recognized as endogenous. [source] Genotype and temperature influence pea aphid resistance to a fungal entomopathogenPHYSIOLOGICAL ENTOMOLOGY, Issue 2 2003David A. Stacey Abstract. The influence of temperature on life history traits of four Acyrthosiphon pisum clones was investigated, together with their resistance to one genotype of the fungal entomopathogen Erynia neoaphidis. There was no difference among aphid clones in development rate, but they did differ in fecundity. Both development rate and fecundity were influenced by temperature, but all clones showed similar responses to the changes in temperature (i.e. the interaction term was nonsignificant). However, there were significant differences among clones in susceptibility to the pathogen, and this was influenced by temperature. Furthermore, the clones differed in how temperature influenced susceptibility, with susceptibility rankings changing with temperature. Two clones showed changes in susceptibility which mirrored changes in the in vitro vegetative growth rate of E. neoaphidis at different temperatures, whereas two other clones differed considerably from this expected response. Such interactions between genotype and temperature may help maintain heritable variation in aphid susceptibility to fungal pathogen attack and have implications for our understanding of disease dynamics in natural populations. This study also highlights the difficulties of drawing conclusions about the efficacy of a biological control agent when only a restricted range of pest genotypes or environmental conditions are considered. [source] A host-pathogen simulation model: powdery mildew of grapevinePLANT PATHOLOGY, Issue 3 2008A. Calonnec An epidemiological model simulating the growth of a single grapevine stock coupled to the dispersal and disease dynamics of the airborne conidia of the powdery mildew pathogen Erysiphe necator was developed. The model input variables were either climatic (temperature, wind speed and direction) or related to the pathogen (location and onset of primary infection). The environmental input variables dictated plant growth and pathogen spread (latent period, infection, lesion growth, conidial spore production and release). Input parameters characterized the crop production system, the growth conditions and the epidemiological characteristics of the pathogen. Output described, at each time step, number, age and pattern of healthy and infected organs, infected and infectious leaf area and aerial density of spores released. Validation of the model was achieved by comparing model output with experimental data for epidemics initiated at different times of host growth. Epidemic behaviour for two contrasting years of crop development and 7 phenological stages at the time of primary infection (PI) was examined. For PI occurring at day 115 a vine with late budbreak (1998) showed 58% of primary leaves diseased at flowering compared with only 19% for a vine with early budbreak (2003). Depending on the phenological stage at PI (1,4 leaves), the proportion of diseased primary leaves decreased from 42% to 6% at flowering. Simulations suggested that differences resulted from the interplay between the timing of the first sporulation event, the phenological stage at the time of initial infection, and the age structure and spatial distribution of the leaf population. [source] Variation in pathogen aggressiveness within a metapopulation of the Cakile maritima,Alternaria brassicicola host,pathogen associationPLANT PATHOLOGY, Issue 3 2005P. H. Thrall Variation in aggressiveness and its consequences for disease epidemiology were studied in the Cakile maritima,Alternaria brassicicola host,pathogen association. Variability in pathogen growth rates and spore production in vitro, as well as disease severity and lesion growth rate on C. maritima in glasshouse inoculation trials, were investigated. Substantial variation was found in growth rates among individual A. brassicicola isolates, as well as among pathogen populations. A significant trade-off also existed between growth and spore production, such that faster-growing isolates produced fewer spores per unit area. While there was little evidence for a link between growth in vitro and either disease severity or lesion development among fast- vs slow-growth isolate classes at the individual isolate level, the results suggest that variation in pathogen fitness components associated with aggressiveness may influence disease dynamics in nature. An analysis using an independent data set of disease prevalence in the associated host populations found a significant positive relationship between the average growth rate of pathogen populations in vitro and disease progress over the growing season in wild host populations. Trade-offs such as those demonstrated between growth rate and spore production may contribute to the maintenance of variation in quantitatively based host,pathogen interactions. [source] |