Home About us Contact | |||
Direct Sequencing Analysis (direct + sequencing_analysis)
Selected AbstractsIdentification of a de novo Lys304Gln mutation in the glycine receptor ,-1 subunit gene in a Korean infant with hyperekplexiaMOVEMENT DISORDERS, Issue 4 2008Hoon-Chul Kang MD Abstract Startle disease or hyperekplexia (STHE; MIM 149400) is a rare disorder that is characterized by marked muscular hypertonia in infancy and an exaggerated startle response to unexpected acoustic or tactile stimuli. Mutations in the gene encoding the ,-1 subunit of the inhibitory glycine receptor (GLRA1) were reported as causes of STHE. Recently, we encountered a Korean male infant with generalized stiffness that was observed from the first 3 days of life. The abnormal startle response was evident from the fourth week of life, and he showed marked improvement in the startle response and muscle hypertonia after being administered phenobarbital and clonazepam. Direct sequencing analysis of the infant and his parents revealed a de novo variation (c.910A>C) in the GLRA1 gene, resulting in a novel Lys304Gln missense mutation. © 2007 Movement Disorder Society [source] BRAF mutation associated with dysregulation of apoptosis in human colorectal neoplasmsINTERNATIONAL JOURNAL OF CANCER, Issue 6 2005Nobunao Ikehara Abstract To understand the role of BRAF dysfunction in the carcinogenesis and progression/development of colorectal tumors, the authors investigated genetic alterations in the BRAF gene in human colorectal neoplasms as well as the effects of an RAS inhibitor in BRAF -mutant cells. Seven colon cancer cell lines and 116 colorectal tumors (34 adenomas and 82 adenocarcinomas) were analyzed. Genetic alterations in the BRAF and K- ras genes were examined using polymerase chain reaction-single strand conformation polymorphism and direct sequencing analyses. The growth-inhibitory and apoptosis-inducing effects of the FTI-277 RAS inhibitor in colon cancer cell lines were analyzed as well. An immunohistochemical study was also performed to investigate the correlations between the clinicopathologic parameters involved in the Ki-67 labeling index and the number of apoptotic bodies in tumor cells. FTI-277 did not suppress the proliferation of BRAF -mutant cells (WiDr and TCO), but remarkably inhibited the growth of K- ras mutant cells (LoVo). Interestingly, LoVo cells underwent apoptosis by FTI-277 in a dose-dependent manner, whereas WiDr cells were resistant to this agent. In tumor samples, BRAF mutations were found in 1 (3.0%) of 33 adenomas and 6 (7.2%) of 83 adenocarcinomas. No tumor exhibited mutations in both the BRAF and K- ras genes. Neither BRAF nor K- ras mutations correlated with the Ki-67 labeling index immunohistochemically. However, the number of apoptotic bodies was significantly decreased in the BRAF -mutant tumors. Mutation in the BRAF gene may contribute to colorectal carcinogenesis by upregulating the antiapoptotic role of the RAS/RAF/MEK/ERK pathway. © 2005 Wiley-Liss, Inc. [source] Identification of novel alternatively spliced BRCA1-associated RING domain (BARD1) messenger RNAs in human peripheral blood lymphocytes and in sporadic breast cancer tissuesGENES, CHROMOSOMES AND CANCER, Issue 9 2007Grazia Lombardi BARD1 (BRCA1-associated RING domain) is the dominant binding partner of BRCA1 in vivo. The BARD1 gene has been reported to be mutated in a subset of breast and ovarian cancer patients and BARD1 germ-line mutations have been identified in breast cancer patients negative for BRCA1 or BRCA2 gene alterations. In the present study, we show by RT-PCR and direct sequencing analysis the occurrence of seven novel and one previously identified BARD1 splicing variants in human lymphocytes and breast cancers. Two of the eight variants (BARD1, and BARD1 ,RIN) preserve a correct open reading frame and could encode BARD1 internally deleted proteins, while the remaining six variants display premature stop codons. Characterization of the relative expression of BARD1 FL, BARD1,, and BARD1 ,RIN using quantitative PCR analysis indicated that the mean expression levels of BARD1 FL, BARD1,, and BARD1 ,RIN were significantly higher in tumors than in morphologically normal tissues and lymphocytes. However, we were unable to identify either qualitatively or quantitatively tumor-specific expression patterns of the identified BARD1 splicing variants. © 2007 Wiley-Liss, Inc. [source] Suppression of putative tumour suppressor gene GLTSCR2 expression in human glioblastomas,THE JOURNAL OF PATHOLOGY, Issue 2 2008Y-J Kim Abstract Glioma tumour-suppressor candidate region gene 2 (GLTSCR2/PICT-1) is localized within the well-known 1.4 Mb tumour-suppressive region of chromosome 19q, which is frequently altered in various human tumours, including diffuse gliomas. Aside from its chromosomal localization, several lines of evidence, including PTEN-phosphorylating and cell-killing activities, suggests that GLTSCR2 participates in the suppression of tumour growth and development. However, little is known about the biological functions and molecular mechanisms of GLTSCR2 as a tumour suppressor gene. We investigated the pathological significance of GLTSCR2 expression in association with the development and progression of glioblastomas, the most common malignant brain tumour. We used real-time PCR and western blot analysis to examine the expression levels of GLTSCR2 mRNA and protein in glioblastomas, normal brain tissue and in non-glial tumour tissue of different origin, and found that GLTSCR2 expression is down-regulated in glioblastomas. In addition, direct sequencing analysis and fluorescence in situ hybridization clearly demonstrates the presence of genetic alterations, such as a nonsense mutation and deletion, in the GLTSCR2 gene in glioblastomas. Finally, our immunohistochemical study demonstrates that GLTSCR2 is sequentially down-regulated according to the histological malignant progression of the astrocytic glial tumour. Taken together, our results suggest that GLTSCR2 is involved in astrocytic glioma progression. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source] P-96 Fetal endothelial cells in full-term placenta, but not in first trimester placenta, express Fc,RIIb2 mRNAAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 5 2004Mishima Takuya In the human placenta, IgG-transport from maternal to fetal blood starts in the second trimester and continues through the third trimester. There are two cellular barriers for IgG-transport: the first and second barriers are syncytiotrophoblast and fetal endothelial cells (ECs), respectively. Sorting via FcRn is considered the IgG-transporter in the first barrier. The mechanism of IgG-transport in the second barrier is not fully understood. Recently, we reported a novel Fc,RIIb-containing compartment that may serve as an IgG-transporter in the second barrier (Mol Biol Cell 13 (suppl) 548a, 2002). To further investigate the feasibility of the Fc,RIIb-vesicle involvement in IgG-transport in placental ECs, we have studied FcR-expression in the developing human placenta by RT-PCR and direct sequencing analysis. First trimester and full-term placentas were used. We proved that the Fc,RII expressed in villus ECs in full-term placenta was the b2 isoform. Fc,RIIb2 mRNA expression could not be detected in first trimester placenta, while it was expressed in full-term placenta. In contrast, FcRn mRNA expression was detectable in first trimester placenta as well as in full-term placenta. These results seem consistent with our hypothesis that in first trimester placenta IgG is transcytosed via FcRn across the first barrier but IgG cannot be transported in the second barrier that does not express Fc,RIIb2 and that the Fc,RIIb2-positive compartment is critical for IgG-transport in the human placenta. [source] Alterations of the synovial T cell repertoire in anti,citrullinated protein antibody,positive rheumatoid arthritis,ARTHRITIS & RHEUMATISM, Issue 7 2009Tineke Cantaert Objective The association of HLA,DRB1 alleles with anti,citrullinated protein antibodies (ACPAs) in rheumatoid arthritis (RA) suggests the potential involvement of T lymphocytes in ACPA-seropositive disease. The purpose of this study was to investigate this hypothesis by systematic histologic and molecular analyses of synovial T cells in ACPA+ versus ACPA, RA patients. Methods Synovial biopsy samples were obtained from 158 RA patients. Inflammation was determined histologically and immunohistochemically. RNA was extracted from peripheral blood mononuclear cells and synovial tissues obtained from 11 ACPA+ RA patients, 7 ACPA, RA patients, and 10 spondylarthritis (SpA) patients (arthritis controls). T lymphocyte clonality was studied by combined quantitative and qualitative T cell receptor CDR3 length distribution (LD) analysis and direct sequencing analysis. Results ACPA+ and ACPA, RA patients were similar at both the clinical and histologic levels. At the molecular level, however, patients with ACPA+ synovitis displayed a marked elevation of qualitative CDR3 LD alterations as compared with those with ACPA, synovitis and with the SpA controls. These differences in CDR3 LD were not observed in the peripheral blood, indicating a selective recruitment and/or local expansion of T cells in the synovial compartment. The CDR3 LD alterations reflected true monoclonal or oligoclonal expansions, as confirmed by direct sequencing of the T cell receptor. The CDR3 LD alterations in RA synovium did not correlate with B cell clonal expansions but were inversely associated with synovial lymphoid neogenesis. Conclusion The T cell repertoire is specifically restricted in RA patients with ACPA+ synovitis. Whereas the origin and role of these clonal alterations remain to be determined, our data suggest the preferential involvement of T lymphocytes in ACPA-seropositive RA. [source] |