Direct Optimization (direct + optimization)

Distribution by Scientific Domains


Selected Abstracts


Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology

CLADISTICS, Issue 3 2007
Claudia P. Arango
Higher-level phylogenetics of Pycnogonida has been discussed for many decades but scarcely studied from a cladistic perspective. Traditional taxonomic classifications are yet to be tested and affinities among families and genera are not well understood. Pycnogonida includes more than 1300 species described, but no systematic revisions at any level are available. Previous attempts to propose a phylogeny of the sea spiders were limited in characters and taxon sampling, therefore not allowing a robust test of relationships among lineages. Herein, we present the first comprehensive phylogenetic analysis of the Pycnogonida based on a total evidence approach and Direct Optimization. Sixty-three pycnogonid species representing all families including fossil taxa were included. For most of the extant taxa more than 6 kb of nuclear and mitochondrial DNA and 78 morphological characters were scored. The most parsimonious hypotheses obtained in equally weighted total evidence analyses show the two most diverse families Ammotheidae and Callipallenidae to be non-monophyletic. Austrodecidae + Colossendeidae + Pycnogonidae are in the basal most clade, these are morphologically diverse groups of species mostly found in cold waters. The raising of the family Pallenopsidae is supported, while Eurycyde and Ascorhynchus are definitely separated from Ammotheidae. The four fossil taxa are grouped within living Pycnogonida, instead of being an early derived clade. This phylogeny represents a solid framework to work towards the understanding of pycnogonid systematics, providing a data set and a testable hypothesis that indicate those clades that need severe testing, especially some of the deep nodes of the pycnogonid tree and the relationships of ammotheid and callipallenid forms. The inclusion of more rare taxa and additional sources of evidence are necessary for a phylogenetic classification of the Pycnogonida. © The Willi Hennig Society 2006. [source]


Direct optimization of dynamic systems described by differential-algebraic equations

OPTIMAL CONTROL APPLICATIONS AND METHODS, Issue 6 2008
Brian C. Fabien
Abstract This paper presents a method for the optimization of dynamic systems described by index-1 differential-algebraic equations (DAE). The class of problems addressed include optimal control problems and parameter identification problems. Here, the controls are parameterized using piecewise constant inputs on a grid in the time interval of interest. In addition, the DAE are approximated using a Rosenbrock,Wanner (ROW) method. In this way the infinite-dimensional optimal control problem is transformed into a finite-dimensional nonlinear programming problem (NLP). The NLP is solved using a sequential quadratic programming (QP) technique that minimizes the L, exact penalty function, using only strictly convex QP subproblems. This paper shows that the ROW method discretization of the DAE leads to (i) a relatively small NLP problem and (ii) an efficient technique for evaluating the function, constraints and gradients associated with the NLP problem. This paper also investigates a state mesh refinement technique that ensures a sufficiently accurate representation of the optimal state trajectory. Two nontrivial examples are used to illustrate the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Multilocus ribosomal RNA phylogeny of the leaf beetles (Chrysomelidae)

CLADISTICS, Issue 1 2008
Jesús Gómez-Zurita
Basal relationships in the Chrysomelidae (leaf beetles) were investigated using two nuclear (small and partial large subunits) and mitochondrial (partial large subunit) rRNA (, 3000 bp total) for 167 taxa covering most major lineages and relevant outgroups. Separate and combined data analyses were performed under parsimony and model-based tree building algorithms from dynamic (direct optimization) and static (Clustal and BLAST) sequence alignments. The performance of methods differed widely and recovery of well established nodes was erratic, in particular when using single gene partitions, but showed a slight advantage for Bayesian inferences and one of the fast likelihood algorithms (PHYML) over others. Direct optimization greatly gained from simultaneous analysis and provided a valuable hypothesis of chrysomelid relationships. The BLAST-based alignment, which removes poorly aligned sequence segments, in combination with likelihood and Bayesian analyses, resulted in highly defensible trees obtained in much shorter time than direct optimization, and hence is a viable alternative when data sets grow. The main taxonomic findings include the recognition of three major lineages of Chrysomelidae, including a basal "sagrine" clade (Criocerinae, Donaciinae, Bruchinae), which was sister to the "eumolpine" (Spilopyrinae, Eumolpinae, Cryptocephalinae, Cassidinae) plus "chrysomeline" (Chrysomelinae, Galerucinae) clades. The analyses support a broad definition of subfamilies (i.e., merging previously separated subfamilies) in the case of Cassidinae (cassidines + hispines) and Cryptocephalinae (chlamisines + cryptocephalines + clytrines), whereas two subfamilies, Chrysomelinae and Eumolpinae, were paraphyletic. The surprising separation of monocot feeding Cassidinae (associated with the eumolpine clade) from the other major monocot feeding groups in the sagrine clade was well supported. The study highlights the need for thorough taxon sampling, and reveals that morphological data affected by convergence had a great impact when combined with molecular data in previous phylogenetic analyses of Chrysomelidae. © The Willi Hennig Society 2007. [source]


Estimating common trends in multivariate time series using dynamic factor analysis

ENVIRONMETRICS, Issue 7 2003
A. F. Zuur
Abstract This article discusses dynamic factor analysis, a technique for estimating common trends in multivariate time series. Unlike more common time series techniques such as spectral analysis and ARIMA models, dynamic factor analysis can analyse short, non-stationary time series containing missing values. Typically, the parameters in dynamic factor analysis are estimated by direct optimization, which means that only small data sets can be analysed if computing time is not to become prohibitively long and the chances of obtaining sub-optimal estimates are to be avoided. This article shows how the parameters of dynamic factor analysis can be estimated using the EM algorithm, allowing larger data sets to be analysed. The technique is illustrated on a marine environmental data set. Copyright © 2003 John Wiley & Sons, Ltd. [source]


A general framework for evaluating nonlinearity, noise and dynamic range in continuous-time OTA-C filters for computer-aided design and optimization

INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, Issue 4 2007
S. Koziel
Abstract Efficient procedures for evaluating nonlinear distortion and noise valid for any OTA-C filter of arbitrary order are developed based on matrix description of a general OTA-C filter model. Since those procedures use OTA macromodels, they allow us to obtain the results significantly faster than transistor-level simulation. On the other hand, the general OTA-C filter model allows us to apply matrix transforms that manipulate (rescale) filter element values and/or change topology without changing its transfer function. Due to this, the proposed procedures can be used in direct optimization of OTA-C filters with respect to important characteristics such as noise performance, THD, IM3, DR or SNR. As an example, a simple optimization procedure using equivalence transformations is discussed. An application example of the proposed approach to optimal block sequencing and gain distribution of 8th order cascade Butterworth filter is given. Accuracy of the theoretical tools has been verified by comparing to transistor-level simulation results and to experimental results. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Gaussian approximation of exponential type orbitals based on B functions

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 2 2009
Didier Pinchon
Abstract This work gives new, highly accurate optimized gaussian series expansions for the B functions used in molecular quantum mechanics. These functions are generally chosen because of their compact Fourier transform, following Shavitt. The inverse Laplace transform in the square root of the variable is used for Gauss quadrature in this work. Two procedures for obtaining accurate gaussian expansions have been compared for the required extended precision arithmetic. The first is based on Gaussian quadratures and the second on direct optimization. Both use the Maple computer algebra system. Numerical results are tabulated and compared with previous work. Special cases are found to agree before pushing the optimization technique further. The optimal gaussian expansions of B functions obtained in this work are available for reference. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009 [source]


Electron pairing and chemical bonds.

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 12 2005
Electron fluctuation, pair localization in ELF domains
Abstract This article reports the numerical comparison of the quantities characterizing the extent of electron fluctuation and pair localization in the domains determined by the direct minimization of electron fluctuation with the domains resulting from the partitioning of the molecules based on the topological analysis of the so-called electron localization function (ELF). Such a comparison demonstrates that the ELF partitioning can be regarded as a feasible alternative to computationally much more demanding direct optimization of minimum fluctuation domains. This opened the possibility of the systematic scrutiny of the electron pair model of the chemical bond, and as it was demonstrated, the previous pessimistic claims about the applicability of this model are not completely justified. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 1205,1213, 2005 [source]


Phylogeny, biogeography and the stepwise evolutionary colonization of intertidal habitat in the Liparocephalini based on morphological and molecular characters (Coleoptera: Staphylinidae: Aleocharinae)

CLADISTICS, Issue 4 2010
Kee-Jeong Ahn
A phylogenetic analysis of the tribe Liparocephalini Fenyes is presented based on morphological and molecular characters. The data set comprised 50 adult morphological characters, partial COI (907 bp), COII (366 bp) and 12S rDNA (325,355 bp), and nearly complete sequences of 18S rDNA (1768,1902 bp) for 21 species. Eighteen species of liparocephaline beetles from all eight genera and three outgroups, are included. The sequences were analysed separately and simultaneously with morphological characters by direct optimization in the program POY4 and by partitioned Bayesian analysis for the combined data. The direct optimization (DO) tree for the combined data under equal weighting, which also shows a minimum incongruence length difference value, resulted in a monophyletic Liparocephalini with the following patterns of phylogenetic relationships (outgroup ((Baeostethus, Ianmoorea) (Paramblopusa ((Amblopusa, Halorhadinus) (Liparocephalus, Diaulota))))). A sensitivity analysis using 16 different parameter sets for the combined data shows the monophyly of the liparocephalines and all its genera under all parameter sets. Bayesian analysis resulted in topological differences in comparison with the DO tree under equal weighting only in the position of the genus Paramblopusa and clade (Amblopusa + Halorhadinus), which were reversed. Historical biogeography and the stepwise evolutionary colonization of intertidal habitat in the Liparocephalini are discussed. Based on the biogeographical analyses, we hypothesize that the ancestor of the Liparocephalini occurred along the Panthallassan Ocean, the direct antecedent of the Pacific Ocean, followed by repeated dispersals to the Nearctic from the Palearctic. We also hypothesize that ancestors of the Liparocephalini appear to have arisen in the littoral zone of beaches and then colonized rocky reef areas in the low tidal zone later through high- to mid-tide zones. ,© The Willi Hennig Society 2009. [source]


An application of dynamic homology to morphological characters: direct optimization of setae sequences and phylogeny of the family Odontellidae (Poduromorpha, Collembola)

CLADISTICS, Issue 4 2009
Mikaël Agolin
The concept of character and the definition of the attribute are two major theoretical issues of phylogenetics. Lately, great progress has been made in the conceptual development of attributes as historical individuals undergoing series of transformations. While operational application of this ideographic concept of character has been possible since the publication of the direct optimization algorithm and POY software, it has been restricted to molecular characters only. The present paper proposes the first application of direct optimization to morphological characters, in the case study of the phylogeny of Odontellidae. This new homology regime is compared to the traditional homology scheme. The theoretical and operational limitations of the application of direct optimization to morphological characters are discussed. Some thoughts on the basics of its generalization to all morphological characters analyzed in a dynamic homology phylogenetic framework are given. © The Willi Hennig Society 2009;. [source]


Phylogenetic relationships of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA sequence data

CLADISTICS, Issue 2 2009
Fernando Álvarez-Padilla
The monophyly of Tetragnathidae including the species composition of the family (e.g., Are Nephila and their relatives part of this lineage?), the phylogenetic relationships of its various lineages, and the exact placement of Tetragnathidae within Araneoidea have been three recalcitrant problems in spider systematics. Most studies on tetragnathid phylogeny have focused on morphological and behavioral data, but little molecular work has been published to date. To address these issues we combine previous morphological and behavioral data with novel molecular data including nuclear ribosomal RNA genes 18S and 28S, mitochondrial ribosomal RNA genes 12S and 16S and protein-coding genes from the mitochondrion [cytochrome c oxidase subunit I (COI)] and from the nucleus (histone H3), totaling ca. 6.3 kb of sequence data per taxon. These data were analyzed using direct optimization and static homology using both parsimony and Bayesian methods. Our results indicate monophyly of Tetragnathidae, Tetragnathinae, Leucauginae, the "Nanometa clade" and the subfamily Metainae, which, with the exception of the later subfamily, received high nodal support. Morphological synapomorphies that support these clades are also discussed. The position of tetragnathids with respect to the rest of the araneoid spiders remains largely unresolved but tetragnathids and nephilids were never recovered as sister taxa. The combined dataset suggests that Nephilidae is sister to Araneidae; furthermore, the sister group of Nephila is the clade composed by Herennia plus Nephilengys and this pattern has clear implications for understanding the comparative biology of the group. Tetragnathidae is most likely sister to some members of the "reduced piriform clade" and nephilids constitute the most-basal lineage of araneids. [source]


A molecular phylogeny of fleas (Insecta: Siphonaptera): origins and host associations

CLADISTICS, Issue 5 2008
Michael F. Whiting
Siphonaptera (fleas) is a highly specialized order of holometabolous insects comprising ,2500 species placed in 16 families. Despite a long history of extensive work on flea classification and biology, phylogenetic relationships among fleas are virtually unknown. We present the first formal analysis of flea relationships based on a molecular matrix of four loci (18S ribosomal DNA, 28S ribosomal DNA, Cytochrome Oxidase II, and Elongation Factor 1-alpha) for 128 flea taxa from around the world representing 16 families, 25 subfamilies, 26 tribes, and 83 flea genera with eight outgroups. Trees were reconstructed using direct optimization and maximum likelihood techniques. Our analysis supports Tungidae as the most basal flea lineage, sister group to the remainder of the extant fleas. Pygiopsyllomorpha is monophyletic, as are the constituent families Lycopsyllidae, Pygiopsyllidae, and Stivaliidae, with a sister group relationship between the latter two families. Macropsyllidae is resolved as sister group to Coptopsyllidae with moderate nodal support. Stephanociricidae is monophyletic, as are the two constituent subfamilies Stephanocircinae and Craneopsyllinae. Vermipsyllidae is placed as sister group to Jordanopsylla. Rhopalopsyllidae is monophyletic as are the two constituent subfamilies Rhopalopsyllinae and Parapsyllinae. Hystrichopsyllidae is paraphyletic with Hystrichopsyllini placed as sister to some species of Anomiopsyllini and Ctenopariini placed as sister to Carterettini. Ctenophthalmidae is grossly paraphyletic with the family broken into seven lineages dispersed on the tree. Most notably, Anomiopsyllini is paraphyletic. Pulicidae and Chimaeropsyllidae are both monophyletic and these families are sister groups. Ceratophyllomorpha is monophyletic and includes Ischnopsyllidae, Ceratophyllidae, and Leptopsyllidae. Leptopsyllidae is paraphyletic as are its constituent subfamilies Amphipsyllinae and Leptopsyllinae and the tribes Amphipsyllini and Leptopsyllini. Ischnopsyllidae is monophyletic. Ceratophyllidae is monophyletic, with a monophyletic Dactypsyllinae nested within Ceratophyllinae, rendering the latter group paraphyletic. Mapping of general host associations on our topology reveals an early association with mammals with four independent shifts to birds. © The Willi Hennig Society 2008. [source]


Molecular phylogenetics of tribe Synandreae, a North American lineage of lamioid mints (Lamiaceae)

CLADISTICS, Issue 3 2008
Anne-Cathrine Scheen
The five mint genera Brazoria, Macbridea, Physostegia, Synandra and Warnockia (Lamioideae: Lamiaceae) are all North American endemics. Together with the monotypic European genus Melittis and the Asian genus Chelonopsis, these taxa have been classified as subtribe Melittidinae. Previous morphological studies have failed to uncover synapomorphic characters for this group. We sequenced the plastid trnL-trnF region and trnS-trnG spacer and the nuclear ribosomal 5S non-transcribed spacer (5S-NTS) to assess phylogenetic relationships within Melittidinae. Standard parsimony and direct optimization (POY) analyses show Melittis, the type genus of the subtribe, as sister to Stachys. Thus, the monophyly of subtribe Melittidinae is not supported either by molecular or morphological data. However, the North American endemics form a monophyletic group that can be recognized as the recircumscribed tribe Synandreae. The molecular relationships among these genera are corroborated by both morphological and cytological data. The expected close relationship between the south-central endemics Warnockia and Brazoria and their sister relationship to the widespread genus Physostegia is confirmed. Nevertheless, most of the North American endemics are restricted to the south-east of the continent. Dispersal westwards and northwards is correlated with an increase in chromosome numbers. No specific Eurasian origin (i.e., transatlantic or transpacific) can be determined, but Synandreae are clearly distinct from the large Stachys clade, and therefore represent a separate migration into North America. © The Willi Hennig Society 2007. [source]


Multilocus ribosomal RNA phylogeny of the leaf beetles (Chrysomelidae)

CLADISTICS, Issue 1 2008
Jesús Gómez-Zurita
Basal relationships in the Chrysomelidae (leaf beetles) were investigated using two nuclear (small and partial large subunits) and mitochondrial (partial large subunit) rRNA (, 3000 bp total) for 167 taxa covering most major lineages and relevant outgroups. Separate and combined data analyses were performed under parsimony and model-based tree building algorithms from dynamic (direct optimization) and static (Clustal and BLAST) sequence alignments. The performance of methods differed widely and recovery of well established nodes was erratic, in particular when using single gene partitions, but showed a slight advantage for Bayesian inferences and one of the fast likelihood algorithms (PHYML) over others. Direct optimization greatly gained from simultaneous analysis and provided a valuable hypothesis of chrysomelid relationships. The BLAST-based alignment, which removes poorly aligned sequence segments, in combination with likelihood and Bayesian analyses, resulted in highly defensible trees obtained in much shorter time than direct optimization, and hence is a viable alternative when data sets grow. The main taxonomic findings include the recognition of three major lineages of Chrysomelidae, including a basal "sagrine" clade (Criocerinae, Donaciinae, Bruchinae), which was sister to the "eumolpine" (Spilopyrinae, Eumolpinae, Cryptocephalinae, Cassidinae) plus "chrysomeline" (Chrysomelinae, Galerucinae) clades. The analyses support a broad definition of subfamilies (i.e., merging previously separated subfamilies) in the case of Cassidinae (cassidines + hispines) and Cryptocephalinae (chlamisines + cryptocephalines + clytrines), whereas two subfamilies, Chrysomelinae and Eumolpinae, were paraphyletic. The surprising separation of monocot feeding Cassidinae (associated with the eumolpine clade) from the other major monocot feeding groups in the sagrine clade was well supported. The study highlights the need for thorough taxon sampling, and reveals that morphological data affected by convergence had a great impact when combined with molecular data in previous phylogenetic analyses of Chrysomelidae. © The Willi Hennig Society 2007. [source]


Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology

CLADISTICS, Issue 3 2007
Claudia P. Arango
Higher-level phylogenetics of Pycnogonida has been discussed for many decades but scarcely studied from a cladistic perspective. Traditional taxonomic classifications are yet to be tested and affinities among families and genera are not well understood. Pycnogonida includes more than 1300 species described, but no systematic revisions at any level are available. Previous attempts to propose a phylogeny of the sea spiders were limited in characters and taxon sampling, therefore not allowing a robust test of relationships among lineages. Herein, we present the first comprehensive phylogenetic analysis of the Pycnogonida based on a total evidence approach and Direct Optimization. Sixty-three pycnogonid species representing all families including fossil taxa were included. For most of the extant taxa more than 6 kb of nuclear and mitochondrial DNA and 78 morphological characters were scored. The most parsimonious hypotheses obtained in equally weighted total evidence analyses show the two most diverse families Ammotheidae and Callipallenidae to be non-monophyletic. Austrodecidae + Colossendeidae + Pycnogonidae are in the basal most clade, these are morphologically diverse groups of species mostly found in cold waters. The raising of the family Pallenopsidae is supported, while Eurycyde and Ascorhynchus are definitely separated from Ammotheidae. The four fossil taxa are grouped within living Pycnogonida, instead of being an early derived clade. This phylogeny represents a solid framework to work towards the understanding of pycnogonid systematics, providing a data set and a testable hypothesis that indicate those clades that need severe testing, especially some of the deep nodes of the pycnogonid tree and the relationships of ammotheid and callipallenid forms. The inclusion of more rare taxa and additional sources of evidence are necessary for a phylogenetic classification of the Pycnogonida. © The Willi Hennig Society 2006. [source]


Phylogeny of the American silverfish Cubacubaninae (Hexapoda: Zygentoma: Nicoletiidae): a combined approach using morphology and five molecular loci

CLADISTICS, Issue 1 2007
Luis Espinasa
Relationships within the subfamily Cubacubaninae, the dominant subfamily of Nicoletiidae in America, are appraised based on parsimony analysis of 20 morphological characters and sequence data from five loci (nuclear 18S and 28S rRNA, mitochondrial 16S rRNA, nuclear protein coding gene histone H3, and mitochondrial protein coding gene cytochrome c oxidase subunit I). The data, analyzed under direct optimization for a range of analytical parameter sets, indicated that species may show some biogeographical structure. It also indicated that the presence of articulated submedian appendages on urosternum IV is not a valid discriminating character in taxonomy. Species within the traditional genera Anelpistina, Cubacubana and Neonicoletia were found to belong to a group in which no clear morphological or molecular distinction was present. It is proposed that members of these three genera should be united within a single taxon. On the contrary, the genus Prosthecina is well supported by the data. © The Willi Hennig Society 2006. [source]


Illuminating the evolutionary history of liverworts (Marchantiophyta),towards a natural classification

CLADISTICS, Issue 1 2006
Xiaolan He-Nygrén
The phylogenetic relationships of liverworts were reconstructed using the sequence data of four genome regions including rbcL, rps4 and trnL-F of the chloroplast and 26S large subunit ribosomal rRNA gene of the nucleus, and 90 characters of morphological, ultrastructural and developmental aspects. The taxa sampled consisted of 159 species including 135 liverworts (108 genera, 54 families and 29 suborders), 13 mosses, two hornworts, seven vascular plants and two charophyte algae. Analyses based on maximum parsimony using both direct optimization (POY) and static alignment (NONA), as well as Bayesian inference (MrBayes) were done. All the data sets were analyzed simultaneously. Our study confirms that liverworts compose a monophyletic group which consists of three classes. The class Treubiopsida including both Treubia and Haplomitrium is resolved as the earliest diverging liverwort lineage. Blasia and the complex thalloids are assigned to the Marchantiopsida, under which Blasiidae and Marchantiidae are divided. Marchantiidae include Sphaerocarpales and Marchantiales. The simple thalloid and leafy liverworts form the Jungermanniopsida, which is further divided to subclasses Pelliidae subclassis nov., Metzgeriidae and Jungermanniidae. Metzgeriidae here is defined to include only Metzgeriaceae, Aneuraceae and Vandiemeniaceae, and is the sister group to the leafy liverworts. The leafy liverworts Jungermanniidae include the orders Pleuroziales, Porellales and Jungermanniales. It is assumed that the Porellales and the Jungermanniales have split early, at least in the Jurassic period. In the Porellales, the diversification rate may have remained relatively constant for long periods of time but speeding up only recently within some of the families, associated with an explosive radiation of angiosperms. The Jungermanniales are most probably a recently diversified group which has attained the greatest profusion of structure and the most remarkable diversity of leaf development and protective devices for maturing sporophytes. A detailed classification scheme for liverworts is presented. © The Willi Hennig Society 2006. [source]


Gnathostomulid phylogeny inferred from a combined approach of four molecular loci and morphology

CLADISTICS, Issue 1 2006
Martin V. Sřrensen
The phylogeny of the obscure metazoan phylum Gnathostomulida has previously only been addressed with cladistic analyses of morphological data. In the present study DNA sequence data from four molecular loci, including 18S rRNA, 28S rRNA, histone H3 and cytochrome c oxidase subunit I, are added to a revised morphological data matrix. The data set represents 23 gnathostomulid species that are analyzed under direct optimization using parsimony as the optimality criterion. The results obtained from analyzing the four molecular loci and combined morphological and molecular data under different parameter sets are generally very congruent, and differ only on minor points. The results clearly support gnathostomulid monophyly, as well as the basal division of Gnathostomulida into Filospermoidea and Bursovaginoidea. Filospermoidea were represented by species of Haplognathia and Cosmognathia, and generic monophyly is supported for both groups. Within Bursovaginoidea, Conophoralia (= Austrognathiidae) and Scleroperalia appear as sister groups. Monophyly of Mesognathariidae was confirmed as well, whereas the relationships between species of Gnathostomulidae and Onychognathiidae were contradicted by the molecular data when compared to morphological observations. ©The Willi Hennig Society 2006. [source]


Phylogeny of Mysis (Crustacea, Mysida): history of continental invasions inferred from molecular and morphological data

CLADISTICS, Issue 6 2005
Asta Audzijonyt
We studied the phylogenetic history of opossum shrimps of the genus Mysis Latreille, 1802 (Crustacea: Mysida) using parsimony analyses of morphological characters, DNA sequence data from mitochondrial (16S, COI and CytB) and nuclear genes (ITS2, 18S), and eight allozyme loci. With these data we aimed to resolve a long-debated question of the origin of the non-marine (continental) taxa in the genus, i.e., "glacial relicts" in circumpolar postglacial lakes and "arctic immigrants" in the Caspian Sea. A simultaneous analysis of the data sets gave a single tree supporting monophyly of all continental species, as well as monophyly of the taxa from circumpolar lakes and from the Caspian Sea. A clade of three circumarctic marine species was sister group to the continental taxa, whereas Atlantic species had more distant relationships to the others. Small molecular differentiation among the morphologically diverse endemic species from the Caspian Sea suggested their recent speciation, while the phenotypically more uniform "glacial relict" species from circumpolar lakes (Mysis relicta group) showed deep molecular divergences. For the length-variable ITS2 region both direct optimization and a priori alignment procedures gave similar topologies, although the former approach provided a better overall resolution. In terms of partitioned Bremer support (PBS), mitochondrial protein coding genes provided the largest contribution (83%) to the total tree resolution. This estimate however, appears to be partly spurious, due to the concerted inheritance of mitochondrial characters and probable cases of introgression or ancestral polymorphism. © The Willi Hennig Society 2005. [source]


Phylogeny of Nerillidae (Polychaeta, Annelida) as inferred from combined 18S rDNA and morphological data

CLADISTICS, Issue 2 2005
Katrine Worsaae
A phylogeny of the meiofaunal polychaete family Nerillidae based on morphological, molecular and combined data is presented here. The data sets comprise nearly complete sequences of 18S rDNA and 40 morphological characters of 17 taxa. Sequences were analyzed simultaneously with the morphological data by direct optimization in the program POY, with a variety of parameter sets (costs of gaps: transversions: transitions). Three outgroups were selected from the major polychaete group Aciculata and one from Scolecida. The 13 nerillid species from 11 genera were monophyletic in all analyses with very high support, and three new apomorphies for Nerillidae are identified. The topology of the ingroup varied according to the various parameter settings. Reducing the number of outgroups to one decreased the variance among the phylogenetic hypotheses. The congruence among these was tested and a parameter set, with equal weights (222) and extension gap weighted 1, yielded minimum incongruence (ILD). Several terminal clades of the combined analysis were highly supported, as well as the position of Leptonerilla prospera as sister terminal to the other nerillids. The evolution of morphological characters such as segment numbers, chaetae, appendages and ciliation are traced and discussed. A regressive pathway within Nerillidae is indicated for several characters, however, generally implying several convergent losses. Numerous genera are shown to require revision. © The Willi Hennig Society 2005. [source]


A phylogeny of megachiropteran bats (Mammalia: Chiroptera: Pteropodidae) based on direct optimization analysis of one nuclear and four mitochondrial genes

CLADISTICS, Issue 6 2003
Norberto P Giannini
The phylogeny of megachiropteran bats (Mammalia: Chiroptera: Pteropodidae) has been investigated using several different molecular datasets. These studies differed widely in taxonomic and locus sampling, and their results tended to lack resolution of internal nodes and were themselves largely incongruent. To address this, we assembled a data set of 5 loci (up to 3.5 kbp from 12S rDNA, 16S rDNA, tDNA-valine, cytochrome b, and the nuclear gene c -mos) for 43 species of megachiropterans and 6 microchiropteran outgroups. We analyzed these data with direct optimization under equal costs for substitutions and indels. We used POY in a parallel setting, and searches consisted of replicated swapping + refinements (ratcheting, tree fusing, and iterative pass optimization). Our results indicate that Megachiroptera and all recognized genera (including Pteropus) are monophyletic, and that Melonycteris is the sister group of the clade containing all the other genera. Clades previously proposed using molecular data, as well as many new and traditional groups, were well-supported, and various sources suggest that the degree of conflict with morphological data may be considerably less marked than previously supposed. Analysis of individual loci suffer 70% loss in the number of compatible groups recovered across all analyses with respect to combined analyses. Our results indicate that, within Megachiroptera, nectarivory and cave-dwelling originated several times, but echolocation (used for obstacle detection) evolved only once. Megachiropterans likely originated in SE Asia-Melanesia, and colonized Africa at least four times. [source]


Phylogeny and Systematic Position of Opiliones: A Combined Analysis of Chelicerate Relationships Using Morphological and Molecular Data,

CLADISTICS, Issue 1 2002
Gonzalo Giribet
The ordinal level phylogeny of the Arachnida and the suprafamilial level phylogeny of the Opiliones were studied on the basis of a combined analysis of 253 morphological characters, the complete sequence of the 18S rRNA gene, and the D3 region of the 28S rRNA gene. Molecular data were collected for 63 terminal taxa. Morphological data were collected for 35 exemplar taxa of Opiliones, but groundplans were applied to some of the remaining chelicerate groups. Six extinct terminals, including Paleozoic scorpions, are scored for morphological characters. The data were analyzed using strict parsimony for the morphological data matrix and via direct optimization for the molecular and combined data matrices. A sensitivity analysis of 15 parameter sets was undertaken, and character congruence was used as the optimality criterion to choose among competing hypotheses. The results obtained are unstable for the high-level chelicerate relationships (except for Tetrapulmonata, Pedipalpi, and Camarostomata), and the sister group of the Opiliones is not clearly established, although the monophyly of Dromopoda is supported under many parameter sets. However, the internal phylogeny of the Opiliones is robust to parameter choice and allows the discarding of previous hypotheses of opilionid phylogeny such as the "Cyphopalpatores" or "Palpatores." The topology obtained is congruent with the previous hypothesis of "Palpatores" paraphyly as follows: (Cyphophthalmi (Eupnoi (Dyspnoi + Laniatores))). Resolution within the Eupnoi, Dyspnoi, and Laniatores (the latter two united as Dyspnolaniatores nov.) is also stable to the superfamily level, permitting a new classification system for the Opiliones. [source]