Direct Inhibition (direct + inhibition)

Distribution by Scientific Domains


Selected Abstracts


Direct inhibition of EGF receptor activation in vascular endothelial cells by gefitinib (,Iressa', ZD1839)

CANCER SCIENCE, Issue 7 2004
Akira Hirata
The development of gefitinib (,Iressa', ZD1839) by targeting the EGFR tyrosine kinase is a recent therapeutic highlight. We have reported that gefitinib is antiangiogenic in vitro, as well as in vivo. In this study, we asked if the anti-angiogenic action of gefitinib is due to a direct effect on activation of vascular endothelial cells by EGF. EGF, as well as VEGF, caused pronounced angiogene-sis in an avascular area of the mouse cornea, and i.p. administration of gefitinib almost completely blocked the response to EGF, but not to VEGF. Immunohistochemical analysis demonstrated phosphorylation of EGFR by EGF in the neovasculature, and gefitinib markedly reduced this effect. Gefitinib also inhibited downstream activation of ERK 1/2 via EGFR in cultured microvascular endothelial (HMVE) cells. These findings suggest that the anti-angiogenic effect of gefitinib in the vascular endothelial cells of neo-vasculature is partly attributable to direct inhibition of EGFR activation, and that endothelial cells in malignant tumors play a critical role in the cancer therapeutic efficacy of gefitinib. [source]


Myosin-II negatively regulates minor process extension and the temporal development of neuronal polarity

DEVELOPMENTAL NEUROBIOLOGY, Issue 5 2009
K.M. Kollins
Abstract The earliest stage in the development of neuronal polarity is characterized by extension of undifferentiated "minor processes" (MPs), which subsequently differentiate into the axon and dendrites. We investigated the role of the myosin II motor protein in MP extension using forebrain and hippocampal neuron cultures. Chronic treatment of neurons with the myosin II ATPase inhibitor blebbistatin increased MP length, which was also seen in myosin IIB knockouts. Through live-cell imaging, we demonstrate that myosin II inhibition triggers rapid minor process extension to a maximum length range. Myosin II activity is determined by phosphorylation of its regulatory light chains (rMLC) and mediated by myosin light chain kinase (MLCK) or RhoA-kinase (ROCK). Pharmacological inhibition of MLCK or ROCK increased MP length moderately, with combined inhibition of these kinases resulting in an additive increase in MP length similar to the effect of direct inhibition of myosin II. Selective inhibition of RhoA signaling upstream of ROCK, with cell-permeable C3 transferase, increased both the length and number of MPs. To determine whether myosin II affected development of neuronal polarity, MP differentiation was examined in cultures treated with direct or indirect myosin II inhibitors. Significantly, inhibition of myosin II, MLCK, or ROCK accelerated the development of neuronal polarity. Increased myosin II activity, through constitutively active MLCK or RhoA, decreased both the length and number of MPs and, consequently, delayed or abolished the development of neuronal polarity. Together, these data indicate that myosin II negatively regulates MP extension, and the developmental time course for axonogenesis. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source]


Bimodal life cycle of the burying beetle Nicrophorus quadripunctatus in relation to its summer reproductive diapause

ECOLOGICAL ENTOMOLOGY, Issue 2 2002
Tomoyosi Nisimura
Abstract 1. Under natural conditions in Kyoto, Japan, the reproductive activities of Nicrophorus quadripunctatus Kraatz (Coleoptera: Silphidae) decreased in summer and the species showed a bimodal life cycle. 2. In the laboratory, most adult pairs raised at 20 °C under a LD 12:12 h regime reproduced when provided with a piece of chicken. In adults raised at 20 °C under a LD 16:8 h regime, however, both reproductive behaviour and ovarian development were reduced. It is concluded that these adults entered a reproductive summer diapause. 3. High temperature (25 °C) also suppressed the reproductive behaviour even under a favourable LD 12:12 h regime. In the field, therefore, adults reduce their reproductive activity in summer because of diapause induced by long-day photoperiods and direct inhibition of reproduction by high temperatures. 4. When the temperature was changed from 20 °C to 25 °C immediately after hatching of larvae, they reached the wandering stage in 95% of adult pairs. When the temperature was changed from 20 °C to 25 °C immediately after oviposition, however, no larvae hatched in 85% of pairs. Egg mortality was significantly higher at 25 °C than at 20 and 22.5 °C; no eggs hatched at 27.5 °C. The physiological mechanisms for reducing reproduction probably prevent the beetles from inefficient oviposition in summer. [source]


Analysis of the function of GABAB receptors on inhibitory afferent neurons of Purkinje cells in the cerebellar cortex of the rat

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2002
Marta Than
Abstract Purkinje cells, the output neurons of the cerebellar cortex, receive inhibitory input from basket, stellate and neighbouring Purkinje cells. The aim of the present study was to clarify the role of GABAB receptors on neurons giving inhibitory input to Purkinje cells. In sagittal slices prepared from the cerebellar vermis of the rat, the GABAB receptor agonist baclofen lowered the frequency and amplitude of spontaneous inhibitory postsynaptic currents (IPSCs) recorded in Purkinje cells. These effects were prevented by the GABAB receptor antagonist CGP 55845. Two mechanisms were involved in the depression of the inhibitory input to Purkinje cells. The first mechanism was suppression of the firing of basket, stellate and Purkinje cells. The second mechanism was presynaptic inhibition of GABA release from terminals of the afferent axons. This was indicated by the finding that baclofen decreased the amplitude of IPSCs occurring in Purkinje cells synchronously with action potentials recorded in basket cells. A further support for the presynaptic inhibition is the observation that baclofen decreased the amplitude of autoreceptor currents which are due to activation of GABAA autoreceptors at axon terminals of basket cells by synaptically released GABA. The presynaptic inhibition was partly due to direct inhibition of the vesicular release mechanism, because baclofen lowered the frequency of miniature IPSCs recorded in Purkinje cells in the presence of cadmium and in the presence of tetrodotoxin plus ionomycin. The results show that activation of GABAB receptors decreased GABAA receptor-mediated synaptic input to cerebellar Purkinje cells both by lowering the firing rate of the inhibitory input neurons and by inhibiting GABA release from their axon terminals with a presynaptic mechanism. [source]


SCCA2 inhibits TNF-mediated apoptosis in transfected HeLa cells.,

FEBS JOURNAL, Issue 22 2001
TNF-induced cathepsin G is a candidate target, The reactive centre loop sequence is essential for this function
The squamous cell carcinoma antigens, SCCA1 and SCCA2, are members of the serine protease inhibitors (serpin) superfamily and are transcribed by two tandomly arrayed genes. A number of serpins are known to inhibit apoptosis in mammalian cells. In this study we demonstrate the ability of SCCA2 to inhibit tumor necrosis factor-alpha (TNF,)-induced apoptosis. HeLa cells stably transfected with SCCA2 cDNA had increased percentage cell survival and reduced DNA fragmentation. We investigated if the reactive centre loop (RCL) was necessary to allow SCCA2 to inhibit TNF,-mediated apoptosis. The RCL amino acids (E353Q, L354G, S355A), flanking the predicted cleavage site, were mutated and the resulting SCCA2 lost both the ability to inhibit cathepsin G and to protect stably transfected cells from TNF,-induced apoptosis. The presence of SCCA2 caused a decrease in the activation of caspase-3 upon induction with TNF, but no direct inhibition of caspases by SCCA2 has been found. Expression of cathepsin G was found to be induced in HeLa cells following treatment with TNF,. This protease has recently been shown to have a role in apoptosis through cleavage of substrates, so maybe the relevant target for SCCA2 in this system. [source]


The contribution of hepatic steroid metabolism to serum estradiol and estriol concentrations in nonylphenol treated MMTVneu mice and its potential effects on breast cancer incidence and latency

JOURNAL OF APPLIED TOXICOLOGY, Issue 5 2005
Ricardo Acevedo
Abstract The two major pathways for the metabolism of estradiol-17, (E2) are the 2- and 16-hydroxylase pathways. Research has suggested that the increased production of the estrogenically active 16-hydroxy products such as estriol (E3) may be involved in increased susceptibility to breast cancer. 4-Nonylphenol (4-NP) is an environmental estrogen that also can activate the pregnane-X receptor (PXR) and induce P-450 enzymes responsible for the production of E3. It is hypothesized that 4-NP may act in part as an environmental estrogen by increasing E3 production. Based on its affinity for the estrogen receptor (ER) alone, 4-NP may be more potent than predicted at increasing mammary cancer incidence in the MMTVneu mouse. Female mice were treated per os for 7 days at 0, 25, 50 or 75 mg kg,1 day,1 4-NP to investigate the effects of 4-NP on hepatic estrogen metabolism after an acute treatment. 4-Nonylphenol increased the hepatic formation of E3 in a dose-dependent manner. However, serum E3 concentrations were only increased at 25 mg kg,1 day,1 presumably due to direct inhibition of E3 formation by 4-NP. MMTVneu mice were then treated for 32 weeks at 0, 30 or 45 mg kg,1 day,1 4-NP to determine its effects on mammary cancer formation and estrogen metabolism. 4-Nonylphenol increased mammary cancer formation in the MMTVneu mice at 45 mg kg,1 day,1 but not at 30 mg kg,1 day,1. Mice treated with an equipotent dose of E2, 10 µg kg,1 day,1, based on the relative binding affinities of nonylphenol and estradiol for ER,, did not develop mammary cancer. This suggests that nonylphenol is more potent than predicted based on its affinity for the estrogen receptor. However, no changes in serum E3 concentrations or hepatic E3 production were measured after the chronic treatment. Changes in E3 formation were correlated with increased CYP2B levels after the 7 day 4-NP treatment, and repression of CYP2B and CYP3A after 32 weeks of 4-NP treatment. Microarray analysis and Q-PCR of liver mRNA from the mice treated for 32 weeks demonstrated a decrease in RXR,, the heterodimeric partner of the PXR, which may in part explain the repressed transcription of the P450s measured. In conclusion, 4-NP treatment for 32 weeks increased mammary cancer formation at a dose of 45 mg kg,1 day,1. However, chronic treatment with 4-NP did not increase hepatic E3 formation or serum E3 concentrations. The transient induction by 4-NP of hepatic E3 formation and serum concentrations is most likely not involved in the increased incidence of mammary cancer in MMTVneu mice since E3 serum concentrations were only increased at 25 mg kg,1 day,1, a dose that was not sufficient to induce mammary tumor formation. Nevertheless, the induced hepatic E3 production in the acute exposures to 4-NP was indicative of an increase in mammary cancer incidence after the chronic exposure. Copyright © 2005 John Wiley & Sons, Ltd. [source]


K vitamins, PTP antagonism, and cell growth arrest

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2002
Brian I. Carr
The main function of K vitamins is to act as co-factors for ,-glutamyl carboxylase. However, they have also recently been shown to inhibit cell growth. We have chemically synthesized a series of K vitamin analogs with various side chains at the 2 or 3 position of the core naphthoquinone structure. The analogs with short thio-ethanol side chains are found to be more potent growth inhibitors in vitro of various tumor cell lines. Cpd 5 or [2-(2-mercaptoethanol)-3-methyl-1,4-naphthoquinone] is one of the most potent. The anti-proliferation activity of these compounds is antagonized by exogenous thiols but not by non-thiol antioxidants. This suggests that the growth inhibition is mediated by sulfhydryl arylation of cellular glutathione and cysteine-containing proteins and not by oxidative stress. The protein tyrosine phosphatases (PTP) are an important group of proteins that contain cysteine at their catalytic site. PTPs regulate mitogenic signal transduction and cell cycle progression. PTP inhibition by Cpd 5 results in prolonged tyrosine phosphorylation and activation of several kinases and transcription factors including EGFR, ERK1/2, and Elk1. Cpd 5 could activate ERK1/2 either by signaling from an activated EGFR, which is upstream in the signaling cascade, or by direct inhibition of ERK1/2 phosphatase(s). Prolonged ERK1/2 phosphorylation strongly correlates with Cpd 5-mediated growth inhibition. Cpd 5 can also bind to and inhibit the Cdc25 family of dual specific phosphatases. As a result, several Cdc25 substrates (Cdk1, Cdk2, Cdk4) involved in cell cycle progression are tyrosine phosphorylated and thereby inhibited by its action. Cpd 5 could also inhibit both normal liver regeneration and hepatoma growth in vivo. DNA synthesis during rat liver regeneration following partial hepatectomy, transplantable rat hepatoma cell growth, and glutathione-S-transferase-pi expressing hepatocytes after administration of the chemical carcinogen diethylnitrosamine, are all inhibited by Cpd 5 administration. The growth inhibitory effect during liver regeneration and transplantable tumor growth is also correlated with ERK1/2 phosphorylation induced by Cpd 5. Thus, Cpd 5-mediated inhibition of PTPs, such as Cdc25 leads to cell growth arrest due to altered activity of key cellular kinases involved in signal transduction and cell cycle progression. This prototype K vitamin analog represents a novel class of growth inhibitor based upon its action as a selective PTP antagonist. It is clearly associated with prolonged ERK1/2 phosphorylation, which is in contrast with the transient ERK1/2 phosphorylation induced by growth stimulatory mitogens. © 2002 Wiley-Liss, Inc. [source]


Complement component C1q inhibits ,-amyloid- and serum amyloid P-induced neurotoxicity via caspase- and calpain-independent mechanisms

JOURNAL OF NEUROCHEMISTRY, Issue 3 2008
Karntipa Pisalyaput
Abstract Alzheimer's disease is a neurodegenerative disorder characterized by neuronal loss, ,-amyloid (A,) plaques, and neurofibrillary tangles. Complement protein C1q has been found associated with fibrillar A, deposits, however the exact contributions of C1q to Alzheimer's disease is still unknown. There is evidence that C1q, as an initiator of the inflammatory complement cascade, may accelerate disease progression. However, neuronal C1q synthesis is induced after injury/infection suggesting that it may be a beneficial response to injury. In this study, we report that C1q enhances the viability of neurons in culture and protects neurons against A,- and serum amyloid P (SAP)-induced neurotoxicity. Investigation of potential signaling pathways indicates that caspase and calpain are activated by A,, but C1q had no effect on either of these pathways. Interestingly, SAP did not induce caspase and calpain activation, suggesting that C1q neuroprotection is in distinct from caspase and calpain pathways. In contrast to A,- and SAP-induced neurotoxicity, neurotoxicity induced by etoposide or FCCP was unaffected by the addition of C1q, indicating pathway selectivity for C1q neuroprotection. These data support a neuroprotective role for C1q which should be further investigated to uncover mechanisms which may be therapeutically targeted to slow neurodegeneration via direct inhibition of neuronal loss. [source]


Mercury compounds disrupt neuronal glutamate transport in cultured mouse cerebellar granule cells

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2005
Elena Fonfría
Abstract Cerebellar granule cells are targeted selectively by mercury compounds in vivo. Despite the affinity of mercury for thiol groups present in all cells, the molecular determinant(s) of selective cerebellar degeneration remain to be elucidated fully. We studied the effect of mercury compounds on neuronal glutamate transport in primary cultures of mouse cerebellar granule cells. Immunoblots probed with an antibody against the excitatory amino acid transporter (EAAT) neuronal glutamate transporter, EAAT3, revealed the presence of a specific band in control and mercury-treated cultures. Micromolar concentrations of both methylmercury and mercuric chloride increased the release of endogenous glutamate, inhibited glutamate uptake, reduced mitochondrial activity, and decreased ATP levels. All these effects were completely prevented by the nonpermeant reducing agent Tris-(2-carboxyethyl)phosphine (TCEP). Reduction of mitochondrial activity by mercuric chloride, but not by methylmercury, was inhibited significantly by 4,4,-diisothiocyanato-stilbene-2,2,-disulfonic acid (DIDS) and by reduced extracellular Cl, ion concentration. In addition, DIDS and low extracellular Cl, completely inhibited the release of glutamate induced by mercuric chloride, and produced a partial although significant reduction of that induced by methylmercury. We suggest that a direct inhibition of glutamate uptake triggers an imbalance in cell homeostasis, leading to neuronal failure and Cl, -regulated cellular glutamate efflux. Our results demonstrate that neuronal glutamate transport is a novel target to be taken into account when assessing mercury-induced neurotoxicity. © 2005 Wiley-Liss, Inc. [source]


Polymethylmethacrylate particles impair osteoprogenitor viability and expression of osteogenic transcription factors Runx2, osterix, and Dlx5

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2010
Richard Chiu
Abstract Polymethylmethacrylate (PMMA) particles have been shown to inhibit the differentiation of osteoprogenitor cells, but the mechanism of this inhibitory effect has not been investigated. We hypothesize that the inhibitory effects of PMMA particles involve impairment of osteoprogenitor viability and direct inhibition of transcription factors that regulate osteogenesis. We challenged MC3T3-E1 osteoprogenitors with PMMA particles and examined the effects of these materials on osteoprogenitor viability and expression of transcription factors Runx2, osterix, Dlx5, and Msx2. MC3T3-E1 cells treated with PMMA particles over a 72-h period showed a significant reduction in cell viability and proliferation as indicated by a dose- and time-dependent increase in supernatant levels of lactate dehydrogenase, an intracellular enzyme released from dead cells, a dose-dependent decrease in cell number and BrdU uptake, and the presence of large numbers of positively labeled Annexin V-stained cells. The absence of apoptotic cells on TUNEL assay indicated that cell death occurred by necrosis, not apoptosis. MC3T3-E1 cells challenged with PMMA particles during the first 6 days of differentiation in osteogenic medium showed a significant dose-dependent decrease in the RNA expression of Runx2, osterix, and Dlx5 on all days of measurement, while the RNA expression of Msx2, an antagonist of Dlx5-induced osteogenesis, remained relatively unaffected. These results indicate that PMMA particles impair osteoprogenitor viability and inhibit the expression of transcription factors that promote osteoprogenitor differentiation. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:571,577, 2010 [source]


Acetoside inhibits ,-MSH-induced melanin production in B16 melanoma cells by inactivation of adenyl cyclase

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 10 2009
Ho Sun Song
Abstract Objectives The aim of the study was to determine the mechanism of the whitening effect of acteoside. Methods We used tyrosinase activity and melanin production stimulated in B16 melanoma cells by ,-melanocyte stimulating hormone (,-MSH) or forskolin to measure the whitening effect of acteoside. Key findings Acteoside did not directly inhibit mushroom tyrosinase activity, but dose-dependently inhibited tyrosinase activity and melanin production in B16 melanoma cells stimulated by 1 ,mol/l ,-MSH. Acteoside also reduced cyclic AMP levels in cells stimulated by 1 ,mol/l ,-MSH, suggesting direct inhibition of adenyl cyclase. Acteoside also inhibited productionofbothmelanin and cyclic AMP in cells stimulated by 1 ,mol/l forskolin, an adenyl cyclase activator. Acteoside showed antioxidant activity in a cell-free DPPH (1-diphenyl-2-picrylhydroazyl) assay and inhibited generation of intracellular reactive oxygen species. Conclusions These results suggest that the whitening activity of acteoside results from inhibition of adenyl cyclase and ,-MSH signalling. [source]


Discovery of novel mechanisms and molecular targets for the inhibition of activated thrombin activatable fibrinolysis inhibitor

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 11 2008
K. HILLMAYER
Summary.,Background:,Thrombin activatable fibrinolysis inhibitor (TAFI) is an important regulator of fibrinolysis and an attractive target to develop profibrinolytic drugs. Objective:,To analyze the (inhibitory) properties of five monoclonal antibodies (mAbs) directed towards rat TAFI (i.e. MA-RT13B2, MA-RT30D8, MA-RT36A3F5, MA-RT36B2 and MA-RT82F12). Methods and results:,Direct interference of the mAb with rat activated TAFI (TAFIa) activity was assayed using a chromogenic activity assay. This revealed reductions of 79% ± 1%, 54% ± 4%, and 19% ± 2% in activity in the presence of a 16-fold molar excess of MA-RT13B2, MA-RT36A3F5, and MA-RT82F12, respectively whereas MA-RT30D8 and MA-RT36B2 had no direct inhibitory effect. Additionally, MA-RT13B2 and MA-RT36A3F5 reduced rat TAFIa half-life by 56% ± 2% and 61% ± 3%. Tissue-type plasminogen activator mediated in vitro clot lysis was determined using rat plasma. Compared to potato tuber carboxypeptidase inhibitor, MA-RT13B2, MA-RT30D8, MA-RT36A3F5, and MA-RT82F12 reduced clot lysis times by 86% ± 14%, 100% ± 5%, 100% ± 10%, and 100% ± 11%, respectively. During epitope mapping, Arg227 and Ser251 were identified as major residues interacting with MA-RT13B2. Arg188 and His192 contribute to the interaction with MA-RT36A3F5. Arg227, Ser249, Ser251, and Tyr260 are involved in the binding of MA-RT30D8 and MA-RT82F12 with rat TAFI(a). The following mechanisms of inhibition have been deduced: MA-RT13B2 and MA-RT36A3F5 have a destabilizing effect on rat TAFIa whereas MA-RT30D8 and MA-RT82F12 partially block the access to the active site of TAFIa or interact with the binding of TAFIa to the blood clot. Conclusions:,The described inhibitory mAb towards rat TAFIa will facilitate TAFI research in murine models. Additionally, we reveal novel molecular targets for the direct inhibition of TAFIa through different mechanisms. [source]


Electrical behaviour of interleukin-1 beta (IL-1,) and prostaglandin-E2 (PGE2) on colonic myenteric neurones

NEUROGASTROENTEROLOGY & MOTILITY, Issue 4 2002
A. Kelles
Abstract,Intracellular recordings were used to examine the effects on electrical and synaptic behaviour of interleukin (IL)-1, and prostaglandin E2(PGE2) on myenteric neurones of the guinea-pig colon. Application of IL-1, and PGE2resulted in a concentration-dependent slow depolarization with enhanced spike discharge in, respectively, 45% (21/47) and 83% (33/41) of the impaled colonic neurones. Administration of IL-1, in three neurones (6%) elicited a hyperpolarization. Responses remained during tetrodotoxin application, indicative of a direct effect of both substances on the impaled neurones. The effects of IL-1, remained in the presence of indomethacine, a prostaglandin synthase inhibitor. Responses were seen in both nitric oxide synthase- and choline acetyl transferase-immunoreactive neurones. IL-1, evoked a 26% reduction of the fast excitatory postsynaptic potential. These results indicate that the application of IL-1, and PGE2evoke direct excitatory actions on a subset of myenteric neurones. For IL-1,, direct inhibition and presynaptic inhibition of the fast excitatory postsynaptic potential has also been found. In the distal colon, responses to IL-1, are not mediated through PGE2pathways. [source]


Nitric Oxide and the Paranasal Sinuses

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 11 2008
Jon O. Lundberg
Abstract The discovery within the paranasal sinuses for the production of nitric oxide (NO) has altered the traditional explanations of sinus physiology. This review article reports the ongoing investigation of sinus physiology beginning with the discovery of NO gas production in the paranasal sinuses that occurred in 1995, and the impact that finding has had both in the basic science and clinical arenas. It was shown that healthy paranasal sinus epithelium expresses an inducible NO synthase that continuously generates large amounts of NO, a pluripotent gaseous messenger with potent vasodilating, and antimicrobial activity. This NO can be measured noninvasively in nasally exhaled breath. The role of NO in the sinuses is likely to enhance local host defense mechanisms via direct inhibition of pathogen growth and stimulation of mucociliary activity. The NO concentration in a healthy sinus exceeds those that are needed for antibacterial effects in vitro. In patients with primary ciliary dyskinesia (PCD) and in cystic fibrosis, nasal NO is extremely low. This defect NO generation likely contributes to the great susceptibility to chronic sinusitis in these patients. In addition, the low-nasal NO is of diagnostic value especially in PCD, where nasal NO is very low or absent. Intriguingly, NO gas from the nose and sinuses is inhaled with every breath and reaches the lungs in a more diluted form to enhance pulmonary oxygen uptake via local vasodilation. In this sense NO may be regarded as an "aerocrine" hormone that is produced in the nose and sinuses and transported to a distal site of action with every inhalation. Anat Rec, 291:1479,1484, 2008. © 2008 Wiley-Liss, Inc. [source]


Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs

THE PLANT JOURNAL, Issue 4 2009
Julia Santiago
Summary Abscisic acid (ABA) is a key phytohormone involved in adaption to environmental stress and regulation of plant development. Clade A protein phosphatases type 2C (PP2Cs), such as HAB1, are key negative regulators of ABA signaling in Arabidopsis. To obtain further insight into regulation of HAB1 function by ABA, we have screened for HAB1-interacting partners using a yeast two-hybrid approach. Three proteins were identified, PYL5, PYL6 and PYL8, which belong to a 14-member subfamily of the Bet v1-like superfamily. HAB1,PYL5 interaction was confirmed using BiFC and co-immunoprecipitation assays. PYL5 over-expression led to a globally enhanced response to ABA, in contrast to the opposite phenotype reported for HAB1 -over-expressing plants. F2 plants that over-expressed both HAB1 and PYL5 showed an enhanced response to ABA, indicating that PYL5 antagonizes HAB1 function. PYL5 and other members of its protein family inhibited HAB1, ABI1 and ABI2 phosphatase activity in an ABA-dependent manner. Isothermal titration calorimetry revealed saturable binding of (+)ABA to PYL5, with Kd values of 1.1 ,m or 38 nm in the absence or presence of the PP2C catalytic core of HAB1, respectively. Our work indicates that PYL5 is a cytosolic and nuclear ABA receptor that activates ABA signaling through direct inhibition of clade A PP2Cs. Moreover, we show that enhanced resistance to drought can be obtained through PYL5-mediated inhibition of clade A PP2Cs. [source]


A Metabolic Mechanism for the Detrimental Effect of Exogenous Glucose During Cardiac Storage

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 8 2003
Randy P. Pulis
The purpose of this study was to clarify the metabolic events that explain why supplemental glucose is detrimental during cardiac storage. Four solutions were used to flush and store porcine hearts: St. Thomas Hospital Solution (STHS), University of Wisconsin (UW) solution, and UW + 90 mM histidine, and UW + 90 mM histidine + 11 mM glucose. Despite equivalent increases in lactate in the two histidine-buffered groups throughout 10 h of storage, glycogen utilization was evident in the group without supplemental glucose. The presence of glucose resulted in a reduction in energy production, presumably mediated by direct inhibition of glycogenolysis. Furthermore, UW + histidine was the only group to show consistent improvements in ATP and total adenylates. It was concluded that inclusion of the buffering agent, histidine, to UW solution promotes anaerobic energy production as a result, in part, of preserved high levels of the regulatory control enzyme, phosphofructokinase. [source]


Inhibition of insulin-like growth factor binding protein 5 proteolysis in articular cartilage and joint fluid results in enhanced concentrations of insulin-like growth factor 1 and is associated with improved osteoarthritis

ARTHRITIS & RHEUMATISM, Issue 3 2002
David R. Clemmons
Objective The complement component C1s is present in dog joint fluid in an activated state. Since C1s degrades insulin-like growth factor binding protein 5 (IGFBP-5), we undertook to determine whether inhibiting C1s in joint fluid would result in an increase in the amount of intact IGFBP-5 and IGF-1 in cartilage and joint fluid, and whether C1s inhibition would be associated with a reduction in cartilage destruction during the development of osteoarthritis (OA). Methods Twenty-two dogs were randomized to 3 treatment groups. All dogs underwent anterior cruciate ligament transection and were exercised. Dogs received 1 of 3 treatments: buffer alone (controls; n = 6); PB-145, a peptide derived from the sequence of antithrombin III (n = 9); and pentosan polysulfate (PPS; n = 7). PB-145 or saline was injected into the joint space 3 times per week for 3 weeks. PPS was injected intramuscularly weekly for 3 weeks. Results Joint histology showed preservation of chondrocytes and a smooth joint surface in the animals treated with PB-145 and PPS. Mankin scoring showed statistically significant reductions in joint destruction with PB-145 and PPS treatments (P < 0.01) compared with buffer control. Mean active collagenase concentrations were decreased by these two treatments. Immunoblotting of joint fluid showed that both treatments increased concentrations of intact IGFBP-5. Direct analysis of IGFBP-3 and IGFBP-5 protease activity showed that IGFBP-5 was degraded more rapidly and that PB-145 and PPS inhibited the degradation of both proteins. Total IGF-1 concentrations in joint fluid were increased 5.6,5.8-fold by these two treatments. Analysis showed that C1s was being activated in joint fluid and that its activation was inhibited by the addition of PB-145 or PPS. Conclusion The findings suggest that direct inhibition of the serine protease C1s results in increased concentrations of intact IGFBP-5 and that proteolysis of IGFBP-3 is also inhibited, probably by the inhibition of some other protease. This increase in concentrations of intact IGFBP-3 and IGFBP-5 leads to an increase in IGF-1 which is associated with an improvement in joint architecture during the development of OA. [source]


Inhibition by troglitazone of the antigen-induced production of leukotrienes in immunoglobulin E-sensitized RBL-2H3 cells

BRITISH JOURNAL OF PHARMACOLOGY, Issue 2 2000
Masamichi Yamashita
The effect of troglitazone, an anti-diabetic drug with insulin-sensitizing action, on antigen-induced production of leukotriene (LT) B4, C4 and E4 and prostaglandin D2 (PGD2) was examined in dinitrophenol (DNP)-specific immunoglobulin E (IgE)-sensitized RBL-2H3 mast cells following stimulation by the antigen, DNP-conjugated human serum albumin. Levels of LTB4, C4 and E4 and PGD2 in the conditioned medium were enzyme-immunoassayed. Troglitazone inhibited the antigen-induced production of LTB4, C4 and E4 and the potency of the inhibition was comparable to that of zileuton, a specific inhibitor of 5-lipoxygenase (5-LOX) and a clinically used anti-asthmatic drug. Neither troglitazone nor zileuton affected antigen-induced production of PGD2, arachidonic acid release from membrane phospholipids and degranulation. Troglitazone inhibited LTB4 production by the supernatant fraction of RBL-2H3 cell lysate with similar potency to zileuton, suggesting that troglitazone inhibits LT production by direct inhibition of 5-LOX activity. Furthermore, it was shown that troglitazone as well as zileuton inhibited LTB4 production in A23187-stimulated rat peritoneal neutrophils. These findings suggest that troglitazone inhibits antigen-induced LT production in the IgE-sensitized RBL-2H3 cells and A23187-stimulated rat peritoneal neutrophils by direct inhibition of 5-LOX activity. British Journal of Pharmacology (2000) 129, 367,373; doi:10.1038/sj.bjp.0703044 [source]


Biphasic effects of NMDA on the motility of the rat portal vein

BRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2000
Z L Rossetti
The effect of NMDA on the motility of the rat portal vein was studied in an isolated preparation. NMDA induced a concentration-dependent (10,7,10,4 M) increase of the contraction frequency (maximum increase, 148±6% of control at NMDA 10,4 M). The NMDA-induced excitatory response was prevented by the competitive NMDA receptor antagonists (±)-2-Amino-5-phosphonopentanoic acid (AP-5, 5×10,4 M) or (RS)-3-(2-carboxypiperazine-4-yl) propyl-1-phosphonic acid (CPP, 10,4 M). Tetrodotoxin (TTX, 10,6 M) or atropine (10,4 M) abolished the NMDA-induced increase of the portal vein motility and reversed the excitatory effect to a concentration-dependent inhibition (maximum inhibition, 52±8 and 29±7% of controls, respectively, at NMDA 10,3 M). Removal of the endothelium abolished the NMDA-induced inhibitory response. Sodium nitroprusside concentration-dependently (10,7,10,5 M) inhibited the portal vein motility, while L -NG -nitro-arginine methyl ester (L -NAME, 10,4 M) reversed the inhibitory effect of NMDA (in the presence of TTX), restoring the portal vein spontaneous activity to control values. These results show that NMDA modulates the portal vein motility in a biphasic manner: via indirect activation, through prejunctional NMDA receptors presumably located on intrinsic excitatory neuronal afferences, or via direct inhibition, through endothelial NMDA receptors activating the nitric oxide pathway. Overall these findings support the hypothesis of the existence of a peripheral glutamatergic innervation modulating the contractile activity of the rat portal vein. British Journal of Pharmacology (2000) 129, 156,162; doi:10.1038/sj.bjp.0703002 [source]


Ibudilast: A Non-selective PDE Inhibitor with Multiple Actions on Blood Cells and the Vascular Wall

CARDIOVASCULAR THERAPEUTICS, Issue 3 2001
Yukio Kishi
ABSTRACT Ibudilast (3-isobutyryl-2-isopropylpyrazolo[1,5-a]pyridine) is a nonselective inhibitor of cyclic nucleotide phosphodiesterase (PDE). It is widely used in Japan for improving prognosis and relieving symptoms in patients suffering from ischemic stroke or bronchial asthma. These clinical applications are based on the properties of ibudilast that inhibit platelet aggregation, improve cerebral blood flow and attenuate allergic reactions. The inhibition of platelet aggregation and vasodilatation by ibudilast may be due to synergistic elevation of intracellular cyclic nucleotides and release of nitric oxide (NO) or prostacyclin from endothelium, rather than direct inhibition of PDE5 or PDE3. Another important property of ibudilast is its antiinflammatory activity possibly associated with potent inhibition of PDE4. Combined with its relaxing effects on bronchial smooth muscle, antiinflammatory actvity of ibudilast could favorably influence pathophysiology of asthma by antagonizing chemical mediators triggering asthmatic attacks. Ibudilast was also reported to significantly attenuate inflammatory cell infiltration in the lumbar spinal cord in an animal model of encephalomyelitis. Future investigations should include effects of ibudilast on inflammatory reactions between endothelium and blood cells, which may initiate the development of atherosclerosis. [source]


A Multimeric Quinacrine Conjugate as a Potential Inhibitor of Alzheimer's ,-Amyloid Fibril Formation

CHEMBIOCHEM, Issue 6 2008
Gunnar T. Dolphin
Abstract Amyloid formation and accumulation of the amyloid ,-peptide (A,) in the brain is associated with Alzheimer's disease (AD) pathogenesis. Therefore, among the therapeutic approaches in development to fight the disease, the direct inhibition of the A, self-assembly process is currently widely investigated and is one of the most promising approaches. In this study we investigated the potential of a multimeric display of quinacrine derivatives, as compared to the monomer quinacrine, as a design principal for a novel class of inhibitors against A, fibril formation. The presented multimeric conjugate exhibits a cluster of four quinacrine derivatives on a rigid cyclopeptidic scaffold. Herein is reported the synthesis of the conjugate, together with the in vitro inhibitory evaluation of A,1,40 fibrils using the thioflavin T fluorescence assay, and imaging with atomic force microscopy. Our data show that the multimeric compound inhibits A,1,40 fibril formation with an IC50 value of 20±10 ,M, which contrasts with the nonactive monomeric analogue. This work suggests that assembling multiple copies of acridine moieties to a central scaffold, for multiple interactions, is a promising strategy for the engineering of inhibitors against A, fibril formation. [source]


Discovery of Chromone-Based Inhibitors of the Transcription Factor STAT5

CHEMBIOCHEM, Issue 5 2008
Judith Müller
Obstacles overcome: Gene-specific transcription factors are emerging therapeutic targets, but their direct inhibition is considered to be difficult because of the absence of enzymatic activities. This manuscript describes the discovery of chromone-based inhibitors of the protein,protein interactions required for activity of the transcription factor STAT5, a therapeutic target for the treatment of human cancers. [source]