Direct Ethanol Fuel Cell (direct + ethanol_fuel_cell)

Distribution by Scientific Domains


Selected Abstracts


Testing a Vapour-fed PBI-based Direct Ethanol Fuel Cell

FUEL CELLS, Issue 5 2009
J. Lobato
Abstract This work is focused on the application and performance of a high temperature PBI-based direct ethanol fuel cell, studying the influence of some operating variables such as the temperature, ethanol concentration and oxygen partial pressure. An increase in the temperature resulted in an improvement of the cell performance due to the enhanced electrodic kinetic and electrolyte conductivity. An ethanol/water weight ratio between 0.25 and 0.5 was found to be suitable for providing both enough water and fuel availability to make the ethanol oxidation possible. Measurements of the ethanol crossover at different temperatures and concentrations were carried out. An intermittent lifetime test showed that the cell, after several hours, was able to reach stability. Moreover, its performance was completely reversible with no perceptible losses for 7,days. Finally, tests using bio-ethanol as fuel were performed, with no significant power losses. This final feature is of special interest from a practical ,green' point of view. [source]


Influence of a pore-former and PTFE in the performance of the direct ethanol fuel cell

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2009
S. K. Biswas
Abstract The direct ethanol fuel cell (DEFC) is a promising fuel cell device, which could provide power to portable and microelectronic equipment in the future. In the present investigation, the influence of a pore-former, polytetrafluoroethylene (PTFE) and catalyst loadings in the electrocatalyst of the anode on DEFC performance is studied. The decal transfer method is used to prepare the membrane electrode assembly (MEA) using PtRu/C (40:20% by wt) as the anode catalyst, and Pt/C (40% by wt) as the cathode catalyst, a pore-former, PTFE dispersion and Nafion ionomer. The pore-former used is 10% (by wt) NaHCO3 in the catalyst ink during the preparation of MEA. The voltage-current characteristics of DEFC were monitored at different loadings of the catalyst, PTFE and a pore-former in MEA. The DEFC performance improved with the use of a pore-former and higher loading of PTFE in MEA. Higher DEFC performance is obtained because PTFE, along with the network of pores in the anode side allowed easy removal of reaction species, thereby rendering the catalyst site available for ethanol oxidation. Further, the use of a pore-former and PTFE at the anode allowed higher loading of electrocatalyst resulting in an increase in the performance of DEFC. The DEFC, with 1 mg cm,2 of catalyst loading at the anode and cathode, 10% (by wt) NaHCO3 of a pore-former, 20% (by wt) PTFE loading in catalyst ink gives maximum power density of 8.5 mW cm,2 at a current density of 31.3 mA cm,2. Copyright © 2008 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Ethanol-tolerant Pt-alloy cathodes for direct ethanol fuel cell (DEFC) applications

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2009
F. J. Rodríguez Varela
Abstract The electroactivity of Pt1Co1(a/o)/C and Pt3Cr1(a/o)/C for the oxygen reduction reaction (ORR) in ethanol-containing medium was studied. It was found that these cathodes present a high tolerance to this alcohol. The onset potential of the ORR decreased at 14 and 12 mV in the presence of 0.5 M ethanol on Pt1Co1/C and Pt3Cr1/C, respectively. The tolerance of the Pt alloys is one order of magnitude higher than that shown by Pt-alone catalysts in previous works. Exceptionally, the Pt1Co1/C alloy maintained a very important electrocatalytic activity, i.e. a very small variation in current density at 400 mV in electrochemical cell measurements and improved performances in a direct ethanol fuel cell (DEFC). The current densities obtained from the DEFC equipped with a 10% Pt1Co1/C cathode were similar to those obtained when 20% Pt3Cr1/C was used. However, a higher performance in terms of Pt content was shown by PtCo/C. These electrochemical characteristics indicate the advantage of using PtCo alloys as cathodes in DEFCs. Copyright © 2008 Curtin University of Technology and John Wiley & Sons, Ltd. [source]