Direct Copolymerization (direct + copolymerization)

Distribution by Scientific Domains


Selected Abstracts


Synthesis and characterization of sulfonated poly(benzoxazole ether ketone)s by direct copolymerization as novel polymers for proton-exchange membranes

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 11 2007
Jinhuan Li
Abstract A new series of sulfonated poly(benzoxazole ether ketone)s (SPAEKBO-X) were prepared by the aromatic nucleophilic polycondensation of 4,4,-(hexafluoroisopropylidene)-diphenol with 2,2,-bis[2-(4-fluorophenyl)benzoxazol-6-yl]hexafluoropropane and sodium 5,5,-carbonylbis-2-fluorobenzenesulfonate in various ratios. Fourier transform infrared and 1H NMR were used to characterize the structures and sulfonic acid contents of the copolymers. The copolymers were soluble in N -methyl-2-pyrrolidinone, N,N -dimethylacetamide, and N,N -dimethylformamide and could form tough and flexible membranes. The protonated membranes were thermally stable up to 320 °C in air. The water uptake, hydrolytic and oxidative stability, and mechanical properties were evaluated. At 30,90 °C and 95% relative humidity, the proton conductivities of the membranes increased with the sulfonic acid content and temperature and almost reached that of Nafion 112. At 90,130 °C, without external humidification, the conductivities increased with the temperature and benzoxazole content and reached above 10,2 S/cm. The SPAEKBO-X membranes, especially those with high benzoxazole compositions, possessed a large amount of strongly bound water (>50%). The experimental results indicate that SPAEKBO-X copolymers are promising for proton-exchange membranes in fuel cells, and their properties might be tailored by the adjustment of the copolymer composition for low temperatures and high humidity or for high temperatures and low humidity; they are especially promising for high-temperature applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2273,2286, 2007 [source]


Preparation and HPLC applications of rigid macroporous organic polymer monoliths

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 10-11 2004
Frantisek Svec
Abstract Rigid porous polymer monoliths are a new class of materials that emerged in the early 1990s. These monolithic materials are typically prepared using a simple molding process carried out within the confines of a closed mold. For example, polymerization of a mixture comprising monomers, free-radical initiator, and porogenic solvent affords macroporous materials with large through-pores that enable applications in a rapid flow-through mode. The versatility of the preparation technique is demonstrated by its use with hydrophobic, hydrophilic, ionizable, and zwitterionic monomers. Several system variables can be used to control the porous properties of the monolith over a broad range and to mediate the hydrodynamic properties of the monolithic devices. A variety of methods such as direct copolymerization of functional monomers, chemical modification of reactive groups, and grafting of pore surface with selected polymer chains is available for the control of surface chemistry. Since all the mobile phase must flow through the monolith, the convection considerably accelerates mass transport within the molded material, and the monolithic devices perform well, even at very high flow rates. The applications of polymeric monolithic materials are demonstrated mostly on the separations in the HPLC mode, although CEC, gas chromatography, enzyme immobilization, molecular recognition, advanced detection systems, and microfluidic devices are also mentioned. [source]


Low Water Swelling and High Proton Conducting Sulfonated Poly(arylene ether) with Pendant Sulfoalkyl Groups for Proton Exchange Membranes

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 24 2007
Jinhui Pang
Abstract Novel side-chain-type sulfonated poly(arylene ether) with pendant sulfoalkyl group copolymers (PSA-SPAE-6F) have been synthesized by direct copolymerization from a new sulfonated monomer, sodium 3-(4-(2,6-difluorobenzoyl)phenyl)propane-1-sulfonate. The sulfonate content could be easily controlled by adjusting the sulfonated and the unsulfonated monomer feed ratio. The obtained copolymers all show good thermal and mechanical properties. It should be noted that the most highly sulfonated copolymer, PSA-SPAE-6F90 with an ion exchange capacity of 1.30 mequiv,·,g,1, shows a proton conductivity of 0.11 S,·,cm,1 and a water swelling ratio of only 12.9% at 100,°C, which indicates its high proton conductivity and excellent dimensional stability in hot water. [source]


Poly(ethylene glycol) Surface Coated Magnetic Particles

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 18 2005
Christophe Flesch
Abstract Summary: A methacrylate-functionalized poly(ethylene glycol) macromonomer was copolymerized at the surface of methacrylate-derivatized maghemite nanoparticles. After silylation of the magnetic core with methacryloxypropyltrimethoxysilane, two grafting procedures based on either a direct copolymerization reaction in water or an inverse emulsion polymerization were compared. A direct copolymerization led to low polymer surface amounts, whereas an inverse emulsion process allowed nanocomposite particles containing up to 90 wt.-% polymer to be obtained. TEM picture of maghemite-PEG hybrid particles. [source]


Facile synthesis of functional polyperoxides by radical alternating copolymerization of 1,3-dienes with oxygen

THE CHEMICAL RECORD, Issue 5 2009
Eriko Sato
Abstract We have developed a facile synthesis of degradable polyperoxides by the radical alternating copolymerization of 1,3-diene monomers with molecular oxygen at an atmospheric pressure. In this review, the synthesis, the degradation behavior, and the applications of functional polyperoxides are summarized. The alkyl sorbates as the conjugated 1,3-dienes gave a regiospecific alternating copolymer by exclusive 5,4-addition during polymerization and the resulting polyperoxides decomposed by the homolysis of a peroxy linkage followed by successive , -scissions. The preference of 5,4-addition was well rationalized by theoretical calculations. The degradation of the polyperoxides occurred with various stimuli, such as heating, UV irradiation, a redox reaction with amines, and an enzyme reaction. The various functional polyperoxides were synthesized by following two methods, one is the direct copolymerization of functional 1,3-dienes, and the other is the functionalization of the precursor polyperoxides. Water soluble polyperoxides were also prepared, and the LCST behavior and the application to a drug carrier in the drug delivery system were investigated. In order to design various types of degradable polymers and gels we developed a method for the introduction of dienyl groups into the precursor polymers. The resulting dienyl-functionalized polymers were used for the degradable gels. The degradable branched copolymers showed a microphase-separated structure, which changed owing to the degradation of the polyperoxide segments. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 000,000; 2009: Published online in Wiley InterScience (www.interscience.wiley.com) DOI 10.1002/tcr.200900009 [source]