Differentiated Cell Types (differentiated + cell_type)

Distribution by Scientific Domains


Selected Abstracts


Alterations in Syncytiotrophoblast Cytokine Expression Following Treatment with Lipopolysaccharide

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 1 2006
Yuehong Ma
Problem, The placental syncytium is a differentiated cell type on the surface of the villus that has the potential to release cytokines directly to maternal blood. Responsiveness of this cell type to inflammatory compounds remains largely unelucidated. Method of study, Response to a pro-inflammatory (lipopolysaccharide, LPS) and an anti-inflammatory (dexamethasone, DEX) compound was studied in primary cultures of syncytiotrophoblasts (SCTs). Cells were incubated with and without LPS and DEX. Cytokine levels in conditioned media were determined by enzyme-linked immunosorbent assay and proteome arrays. Results, LPS treatment induced a fourfold increase in interleukin-8 (IL-8) levels in SCTs. LPS enhanced the expression of both pro- and anti-inflammatory cytokines in SCTs. DEX treatment reduced IL-8 levels in control and LPS-treated cultures by 70,90%. Conclusion, Cytokine expression in SCTs was enhanced by LPS treatment and this effect was suppressed by glucocorticoid treatment. This suggests that inflammatory compounds may alter cytokine expression in the syncytium throughout gestation. [source]


Schwann cell caveolin-1 expression increases during myelination and decreases after axotomy

GLIA, Issue 3 2002
Daniel D. Mikol
Abstract The caveolins are a family of related proteins that form the structural framework of caveolae. They have been implicated in the regulation of signal transduction, cell cycle control, and cellular transport processes, particularly cholesterol trafficking. Caveolin-1 is expressed by a variety of cell types, including Schwann cells, although its expression is greatest in differentiated cell types, such as endothelial cells and adipocytes. In the present work, we characterize caveolin-1 expression both during rat sciatic nerve development and after axotomy. Schwann cells express little caveolin-1 on postnatal days 1 and 6. By P30, myelinating Schwann cells express caveolin-1, which is localized in the outer/abaxonal myelin membranes as well as intracellularly. After axotomy, Schwann cell caveolin-1 expression in the distal nerve stump decreases as Schwann cells revert to a premyelinating (p75-positive) phenotype; residual caveolin-1 within the nerve largely localizes to myelin debris and infiltrating macrophages. We speculate that caveolin-1 plays a role in the biology of myelinating Schwann cells. GLIA 38:191,199, 2002. © 2002 Wiley-Liss, Inc. [source]


Circuitry of nuclear factor ,B signaling

IMMUNOLOGICAL REVIEWS, Issue 1 2006
Alexander Hoffmann
Summary:, Over the past few years, the transcription factor nuclear factor (NF)-,B and the proteins that regulate it have emerged as a signaling system of pre-eminent importance in human physiology and in an increasing number of pathologies. While NF-,B is present in all differentiated cell types, its discovery and early characterization were rooted in understanding B-cell biology. Significant research efforts over two decades have yielded a large body of literature devoted to understanding NF-,B's functioning in the immune system. NF-,B has been found to play roles in many different compartments of the immune system during differentiation of immune cells and development of lymphoid organs and during immune activation. NF-,B is the nuclear effector of signaling pathways emanating from many receptors, including those of the inflammatory tumor necrosis factor and Toll-like receptor superfamilies. With this review, we hope to provide historical context and summarize the diverse physiological functions of NF-,B in the immune system before focusing on recent advances in elucidating the molecular mechanisms that mediate cell type-specific and stimulus-specific functions of this pleiotropic signaling system. Understanding the genetic regulatory circuitry of NF-,B functionalities involves system-wide measurements, biophysical studies, and computational modeling. [source]


Morphological characterization of GFP stably transfected adult mesenchymal bone marrow stem cells

JOURNAL OF ANATOMY, Issue 1 2006
Stefania Raimondo
Abstract Increasing attention is being given to the use of adult rather than embryonic stem cells, both for research and for the development of transplantation treatments for human disease. In particular, mesenchymal bone marrow stem cells have been studied extensively because of their ability to self-renew and to give rise to various differentiated cell types, and because of the relative ease with which they can be obtained and cultured. In addition, the possibility of labelling stem cells with green fluorescent protein before transplantation has opened new and promising perspectives for their use in basic research. Because no structural or ultrastructural description of adult mesenchymal stem cells is available in the literature, this paper describes their morphology as revealed by light, confocal and electron microscopy, focusing on cells that are particularly suitable for transplantation studies, i.e. those derived from rat bone marrow transfected with green fluorescent protein. The results provide a basis for experimental studies of the differentiation of these cells in normal and pathological tissues. [source]