Home About us Contact | |||
Different Transition Metals (different + transition_metal)
Selected AbstractsSequential Stereoselective Catalysis: Two Single-Flask Reactions of a Substrate in the Presence of a Bifunctional Chiral Ligand and Different Transition MetalsEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 8 2003Rita Annunziata Abstract A new bifunctional ligand capable of promoting different stereoselective catalytic transformations in combination with different transition metals has been prepared by connecting with a spacer a bis(oxazoline) to dihydroquinidine; this ligand was employed in a one-flask procedure in which methyl (E)-3-(4-vinylphenyl)propenoate underwent first cyclopropanation at the electron-rich double bond and then dihydroxylation at the electron-poor alkene to afford a product containing four stereocenters with complete regiocontrol and high stereoselectivity. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source] Mixed-Transition-Metal Acetylides: Synthesis and Characterization of Complexes with up to Six Different Transition Metals Connected by Carbon-Rich Bridging UnitsCHEMISTRY - A EUROPEAN JOURNAL, Issue 16 2008Rico Packheiser Dipl.-Chem. Abstract The synthesis and reaction chemistry of heteromultimetallic transition-metal complexes by linking diverse metal-complex building blocks with multifunctional carbon-rich alkynyl-, benzene-, and bipyridyl-based bridging units is discussed. In context with this background, the preparation of [1-{(,2 -dppf)(,5 -C5H5)RuCC}-3-{(tBu2bpy)(CO)3ReCC}-5-(PPh2)C6H3] (10) (dppf=1,1,-bis(diphenylphosphino)ferrocene; tBu2bpy=4,4,-di- tert -butyl-2,2,-bipyridyl; Ph=phenyl) is described; this complex can react further, leading to the successful synthesis of heterometallic complexes of higher nuclearity. Heterotetrametallic transition-metal compounds were formed when 10 was reacted with [{(,5 -C5Me5)RhCl2}2] (18), [(Et2S)2PtCl2] (20) or [(tht)AuCC-bpy] (24) (Me=methyl; Et=ethyl; tht=tetrahydrothiophene; bpy=2,2,-bipyridyl-5-yl). Complexes [1-{(,2 -dppf)(,5 -C5H5)RuCC}-3-{(tBu2bpy)(CO)3ReCC}-5-{PPh2RhCl2(,5 -C5Me5)}C6H3] (19), [{1-[(,2 -dppf)(,5 -C5H5)RuCC]-3-[(tBu2bpy)(CO)3ReCC]-5-(PPh2)C6H3}2PtCl2] (21), and [1-{(,2 -dppf)(,5 -C5H5)RuCC}-3-{(tBu2bpy)(CO)3ReCC}-5-{PPh2AuCC-bpy}C6H3] (25) were thereby obtained in good yield. After a prolonged time in solution, complex 25 undergoes a transmetallation reaction to produce [(tBu2bpy)(CO)3ReCC-bpy] (26). Moreover, the bipyridyl building block in 25 allowed the synthesis of Fe-Ru-Re-Au-Mo- (28) and Fe-Ru-Re-Au-Cu-Ti-based (30) assemblies on addition of [(nbd)Mo(CO)4] (27), (nbd=1,5-norbornadiene), or [{[Ti](,-,,,-CCSiMe3)2}Cu(NCMe)][PF6] (29) ([Ti]=(,5 -C5H4SiMe3)2Ti) to 25. The identities of 5, 6, 8, 10,12, 14,16, 19, 21, 25, 26, 28, and 30 have been confirmed by elemental analysis and IR, 1H, 13C{1H}, and 31P{1H} NMR spectroscopy. From selected samples ESI-TOF mass spectra were measured. The solid-state structures of 8, 12, 19 and 26 were additionally solved by single-crystal X-ray structure analysis, confirming the structural assignment made from spectroscopy. [source] Sequential Stereoselective Catalysis: Two Single-Flask Reactions of a Substrate in the Presence of a Bifunctional Chiral Ligand and Different Transition MetalsEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 8 2003Rita Annunziata Abstract A new bifunctional ligand capable of promoting different stereoselective catalytic transformations in combination with different transition metals has been prepared by connecting with a spacer a bis(oxazoline) to dihydroquinidine; this ligand was employed in a one-flask procedure in which methyl (E)-3-(4-vinylphenyl)propenoate underwent first cyclopropanation at the electron-rich double bond and then dihydroxylation at the electron-poor alkene to afford a product containing four stereocenters with complete regiocontrol and high stereoselectivity. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source] Highly Efficient and Versatile Phosphine-Phosphoramidite Ligands for Asymmetric HydrogenationADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 5 2009Matthias Eggenstein Abstract A set of novel phosphine-phosphoramidite ligands possessing two elements of chirality have been prepared through a modular synthetic approach. The ligands (11bS)- N -[2-(diphenylphosphino)phenyl]- N -[(S)-1-phenylethyl]dinaphtho[2,1- d:1,,2,- f][1,3,2]dioxaphosphepin-4-amine [(Sa,Sc)- 1a] and (11bR)- N -[2-(diphenylphosphino)phenyl]- N -[(S)-1-(1-naphthyl)ethyl]dinaphtho[2,1- d:1,,2,- f][1,3,2]dioxaphosphepin-4-amine [(Sa,Sc)- 1b] are unique in providing enantioselectivities ,96% ee and ,94% ee, respectively, in mechanistically distinct hydrogenations of CC, CN and CO double bonds in combination with three different transition metals (rhodium, iridium, and ruthenium, respectively). Particularly remarkable are the enantiomeric excesses up to 97% achieved in the iridium-catalyzed hydrogenation of 2-substituted quinolines, where (11bS)- N -[2-(diphenylphosphino)phenyl]- N -[(S)-1-(naphthalen-1-yl)ethyl]-8,9,10,11, 12,13,14,15-octahydrodinaphtho[2,1- d:1,,2,- f][1,3,2]dioxaphosphepin-4-amine [(Sa,Sc)- 2] proved to be the most selective ligand. Substantially lower ees were obtained with the mismatched diastereomer (Ra,Sc)- 1b and with the N -phenyl-substituted ligand 1c, missing a second element of chirality. [source] |