Home About us Contact | |||
Different Time Steps (different + time_step)
Selected AbstractsParallel asynchronous variational integratorsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 3 2007Kedar G. Kale Abstract This paper presents a scalable parallel variational time integration algorithm for nonlinear elastodynamics with the distinguishing feature of allowing each element in the mesh to have a possibly different time step. Furthermore, the algorithm is obtained from a discrete variational principle, and hence it is termed parallel asynchronous variational integrator (PAVI). The underlying variational structure grants it outstanding conservation properties. Based on a domain decomposition strategy, PAVI combines a careful scheduling of computations with fully asynchronous communications to provide a very efficient methodology for finite element models with even mild distributions of time step sizes. Numerical tests are shown to illustrate PAVI's performance on both slow and fast networks, showing scalability properties similar to the best parallel explicit synchronous algorithms, with lower execution time. Finally, a numerical example in which PAVI needs ,100 times less computing than an explicit synchronous algorithm is shown. Copyright © 2006 John Wiley & Sons, Ltd. [source] Multi-time-step domain coupling method with energy controlINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 13 2010N. Mahjoubi Abstract A multi-time-step integration method is proposed for solving structural dynamics problems on multiple domains. The method generalizes earlier state-space integration algorithms by introducing displacement constraints via Lagrange multipliers, representing the time-integrated constraint forces over the individual time step. It is demonstrated that displacement continuity between the subdomains leads to cancelation of the interface contributions to the energy balance equation, and thus stability and algorithmic damping properties of the original algorithms are retained. The various subdomains can be integrated in time using different time steps and/or different state-space time integration schemes. The solution of the constrained system equations is obtained using a dual Schur formulation, allowing for maximum independence of the calculation of the subdomains. Stability and accuracy are illustrated by a numerical example using a refined mesh around concentrated forces. Copyright © 2010 John Wiley & Sons, Ltd. [source] Efficient non-linear solid,fluid interaction analysis by an iterative BEM/FEM couplingINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 11 2005D. Soares Jr Abstract An iterative coupling of finite element and boundary element methods for the time domain modelling of coupled fluid,solid systems is presented. While finite elements are used to model the solid, the adjacent fluid is represented by boundary elements. In order to perform the coupling of the two numerical methods, a successive renewal of the variables on the interface between the two subdomains is performed through an iterative procedure until the final convergence is achieved. In the case of local non-linearities within the finite element subdomain, it is straightforward to perform the iterative coupling together with the iterations needed to solve the non-linear system. In particular a more efficient and a more stable performance of the new coupling procedure is achieved by a special formulation that allows to use different time steps in each subdomain. Copyright © 2005 John Wiley & Sons, Ltd. [source] A FETI-based multi-time-step coupling method for Newmark schemes in structural dynamicsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 13 2004A. Prakash Abstract We present an efficient and accurate multi-time-step coupling method using FETI domain decomposition for structural dynamics. Using this method one can divide a large structural mesh into a number of smaller subdomains, solve the individual subdomains separately and couple the solutions together to obtain the solution to the original problem. The various subdomains can be integrated in time using different time steps and/or different Newmark schemes. This approach will be most effective for very large-scale simulations on complex geometries. Our coupling method builds upon a method previously proposed by Gravouil and Combescure (GC method). We show that for the simplest case when the same time step is used in all subdomains of the mesh our method reduces to the GC method and is unconditionally stable and energy preserving. In addition, we show that our method possesses these desirable properties for general multi-time-step cases too unlike the GC method which is dissipative. Greater computational efficiency is also achieved through our method by limiting the computation of interface forces to the largest time step as opposed to the smallest time step in the GC method. Copyright © 2004 John Wiley & Sons, Ltd. [source] FEM simulation of turbulent flow in a turbine blade passage with dynamical fluid,structure interactionINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 12 2009Lixiang Zhang Abstract Results are described from a combined mathematical modeling and numerical iteration schemes of flow and vibration. We consider the coupling numerical simulations of both turbulent flow and structure vibration induced by flow. The methodology used is based on the stabilized finite element formulations with time integration. A fully coupled model of flow and flow-induced structure vibration was established using a hydride generalized variational principle of fluid and solid dynamics. The spatial discretization of this coupling model is based on the finite element interpolating formulations for the fluid and solid structure, while the different time integration schemes are respectively used for fluid and solid structure to obtain a stabilized algorithm. For fluid and solid dynamics, Hughes' predictor multi-corrector algorithm and the Newmark method are monolithically used to realize a monolithic solution of the fully coupled model. The numerical convergence is ensured for small deformation vibrating problems of the structure by using different time steps for fluid and solid, respectively. The established model and the associated numerical methodology developed in the paper were then applied to simulate two different flows. The first one is the lid-driven square cavity flow with different Reynolds numbers of 1000, 400 and 100 and the second is the turbulent flows in a 3-D turbine blade passage with dynamical fluid,structure interaction. Good agreement between numerical simulations and measurements of pressure and vibration acceleration indicates that the finite element method formulations developed in this paper are appropriate to deal with the flow under investigation. Copyright © 2009 John Wiley & Sons, Ltd. [source] Volume-of-fluid-based model for multiphase flow in high-pressure trickle-bed reactor: Optimization of numerical parametersAICHE JOURNAL, Issue 11 2009Rodrigo J. G. Lopes Abstract Aiming to understand the effect of various parameters such as liquid velocity, surface tension, and wetting phenomena, a Volume-of-Fluid (VOF) model was developed to simulate the multiphase flow in high-pressure trickle-bed reactor (TBR). As the accuracy of the simulation is largely dependent on mesh density, different mesh sizes were compared for the hydrodynamic validation of the multiphase flow model. Several model solution parameters comprising different time steps, convergence criteria and discretization schemes were examined to establish model parametric independency results. High-order differencing schemes were found to agree better with the experimental data from the literature given that its formulation includes inherently the minimization of artificial numerical dissipation. The optimum values for the numerical solution parameters were then used to evaluate the hydrodynamic predictions at high-pressure demonstrating the significant influence of the gas flow rate mainly on liquid holdup rather than on two-phase pressure drop and exhibiting hysteresis in both hydrodynamic parameters. Afterwards, the VOF model was applied to evaluate successive radial planes of liquid volume fraction at different packed bed cross-sections. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] |