Different Postnatal Ages (different + postnatal_age)

Distribution by Scientific Domains


Selected Abstracts


Cerebellar granule cells show age-dependent migratory differences in vitro

DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2005
Krisztián Tárnok
Abstract Developmental differences between cerebellar granule cells during their migratory period were revealed using dissociated granule cell cultures isolated from 4, 7, or 10 days old (P4, P7, P10) mice. Under all culture conditions, the great majority of cultivated cell populations consisted of those granule cells that had not reach their final destination in the internal granule cell layer (IGL) by the age of isolation. In vitro morphological development and the expression of migratory markers (TAG-1, astrotactin, or EphB2) showed similar characteristics between the cultures. The migration of 1008 granule cells isolated from P4, P7, and P10 cerebella and cultivated under identical conditions were analyzed using statistical methods. In vitro time-lapse videomicroscopy revealed that P4 cells possessed the fastest migratory speed while P10 granule cells retained their migratory activity for the longest time in culture. Cultures obtained from younger postnatal ages showed more random migratory trajectories than P10 cultures. Our observations indicate that despite similar morphological and molecular properties, migratory differences exist in granule cell cultures isolated from different postnatal ages. Therefore, the age of investigation can substantially influence experimental results on the regulation of cell migration. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005 [source]


Quantitative analysis of postnatal neurogenesis and neuron number in the macaque monkey dentate gyrus

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2010
Adeline Jabčs
Abstract The dentate gyrus is one of only two regions of the mammalian brain where substantial neurogenesis occurs postnatally. However, detailed quantitative information about the postnatal structural maturation of the primate dentate gyrus is meager. We performed design-based, stereological studies of neuron number and size, and volume of the dentate gyrus layers in rhesus macaque monkeys (Macaca mulatta) of different postnatal ages. We found that about 40% of the total number of granule cells observed in mature 5,10-year-old macaque monkeys are added to the granule cell layer postnatally; 25% of these neurons are added within the first three postnatal months. Accordingly, cell proliferation and neurogenesis within the dentate gyrus peak within the first 3 months after birth and remain at an intermediate level between 3 months and at least 1 year of age. Although granule cell bodies undergo their largest increase in size during the first year of life, cell size and the volume of the three layers of the dentate gyrus (i.e. the molecular, granule cell and polymorphic layers) continue to increase beyond 1 year of age. Moreover, the different layers of the dentate gyrus exhibit distinct volumetric changes during postnatal development. Finally, we observe significant levels of cell proliferation, neurogenesis and cell death in the context of an overall stable number of granule cells in mature 5,10-year-old monkeys. These data identify an extended developmental period during which neurogenesis might be modulated to significantly impact the structure and function of the dentate gyrus in adulthood. [source]


Differential expression of PKC beta II in the rat organ of Corti

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2007
S. Ladrech
Abstract To investigate a possible involvement of protein kinase C (PKC) in cochlear efferent neurotransmission, we studied the expression of the calcium-dependent PKC beta II isoform in the rat organ of Corti at different postnatal ages using immunofluorescence and immunoelectron microscopy. We found evidence of PKC beta II as early as postnatal day (PND) 5 in efferent axons running in the inner spiral bundle and in Hensen cells. At PND 8, we also found PKC beta II in efferents targeting outer hair cells (OHCs), and a slight detection at the synaptic pole in the first row of the basal and middle cochlear turns. At PND 12, PKC beta II expression declined in the efferent fibres contacting OHCs, whereas expression was concentrated at the postsynaptic membrane, from the basal and middle turns. The adult-like pattern of PKC beta II distribution was observed at PND 20. Throughout the cochlea, we found PKC beta II expression in the Hensen cells, non-sensory cells involved in potassium re-cycling, and lateral efferent terminals of the inner spiral bundle. In addition, we observed expression in OHCs at the postsynaptic membrane facing the endings of the medial efferent system, with the exception of some OHCs located in the most apical region of the cochlea. These data therefore suggest an involvement of PKC beta II in both cochlear efferent neurotransmission and ion homeostasis. Among other functions, PKC beta II could play a role in the efferent control of OHC activity. [source]


Learning to breathe: control of the inspiratory,expiratory phase transition shifts from sensory- to central-dominated during postnatal development in rats

THE JOURNAL OF PHYSIOLOGY, Issue 20 2009
Mathias Dutschmann
The hallmark of the dynamic regulation of the transitions between inspiration and expiration is the timing of the inspiratory off-switch (IOS) mechanisms. IOS is mediated by pulmonary vagal afferent feedback (Breuer,Hering reflex) and by central interactions involving the Kölliker,Fuse nuclei (KFn). We hypothesized that the balance between these two mechanisms controlling IOS may change during postnatal development. We tested this hypothesis by comparing neural responses to repetitive rhythmic vagal stimulation, at a stimulation frequency that paces baseline breathing, using in situ perfused brainstem preparations of rats at different postnatal ages. At ages < P15 (P, postnatal days), phrenic nerve activity (PNA) was immediately paced and entrained to the afferent input and this pattern remained unchanged by repetitive stimulations, indicating that vagal input stereotypically dominated the control of IOS. In contrast, PNA entrainment at > P15 was initially insignificant, but increased after repetitive vagal stimulation or lung inflation. This progressive adaption of PNA to the pattern of the sensory input was accompanied by the emergence of anticipatory centrally mediated IOS preceding the stimulus trains. The anticipatory IOS was blocked by bilateral microinjections of NMDA receptor antagonists into the KFn and PNA was immediately paced and entrained, as it was seen at ages < P15. We conclude that as postnatal maturation advances, synaptic mechanisms involving NMDA receptors in the KFn can override the vagally evoked IOS after ,training' using repetitive stimulation trials. The anticipatory IOS may imply a hitherto undescribed form of pattern learning and recall in convergent sensory and central synaptic pathways that mediate IOS. [source]