Home About us Contact | |||
Different Portions (different + portion)
Selected AbstractsDifferent portions of the maize root system host Burkholderia cepacia populations with different degrees of genetic polymorphismENVIRONMENTAL MICROBIOLOGY, Issue 1 2000Luigi Chiarini In order to acquire a better understanding of the spatial and temporal variations of genetic diversity of Burkholderia cepacia populations in the rhizosphere of Zea mays, 161 strains were isolated from three portions of the maize root system at different soil depths and at three distinct plant growth stages. The genetic diversity among B. cepacia isolates was analysed by means of the random amplified polymorphic DNA (RAPD) technique. A number of diversity indices (richness, Shannon diversity, evenness and mean genetic distance) were calculated for each bacterial population isolated from the different root system portions. Moreover, the analysis of molecular variance ( amova) method was applied to estimate the genetic differences among the various bacterial populations. Our results showed that, in young plants, B. cepacia colonized preferentially the upper part of the root system, whereas in mature plants, B. cepacia was mostly recovered from the terminal part of the root system. This uneven distribution of B. cepacia cells among different root system portions partially reflected marked genetic differences among the B. cepacia populations isolated along maize roots on three distinct sampling occasions. In fact, all the diversity indices calculated indicated that genetic diversity increased during plant development and that the highest diversity values were found in mature maize plants, in particular in the middle and terminal portions of the root system. Moreover, the analysis of RAPD patterns by means of the amova method revealed highly significant divergences in the degree of genetic polymorphism among the various B. cepacia populations. [source] Dynamic scratch-pad memory management with data pipelining for embedded systemsCONCURRENCY AND COMPUTATION: PRACTICE & EXPERIENCE, Issue 13 2010Yanqin Yang Abstract In this paper, we propose an effective data pipelining technique, SPDP (Scratch-Pad Data Pipelining), for dynamic scratch-pad memory (SPM) management with DMA (Direct Memory Access). Our basic idea is to overlap the execution of CPU instructions and DMA operations. In SPDP, based on the iteration access patterns of arrays, we group multiple iterations into a block to improve the data locality of regular array accesses. We allocate the data of multiple iterations into different portions of the SPM. In this way, when the CPU executes instructions and accesses data from one portion of the SPM, DMA operations can be performed to transfer data between the off-chip memory and another portion of SPM simultaneously. We perform code transformation to insert DMA instructions to achieve the data pipelining. We have implemented our SPDP technique with the IMPACT compiler, and conduct experiments using a set of loop kernels from DSPstone, Mibench, and Mediabench on the cycle-accurate VLIW simulator of Trimaran. The experimental results show that our technique achieves performance improvement compared with the previous work. Copyright © 2010 John Wiley & Sons, Ltd. [source] Ecosystem controls of juvenile pink salmon (Onchorynchus gorbuscha) and Pacific herring (Clupea pallasi) populations in Prince William Sound, AlaskaFISHERIES OCEANOGRAPHY, Issue 2001Robert T. Cooney Abstract Five years of field, laboratory, and numerical modelling studies demonstrated ecosystem-level mechanisms influencing the mortality of juvenile pink salmon and Pacific herring. Both species are prey for other fishes, seabirds, and marine mammals in Prince William Sound. We identified critical time-space linkages between the juvenile stages of pink salmon and herring rearing in shallow-water nursery areas and seasonally varying ocean state, the availability of appropriate zooplankton forage, and the kinds and numbers of predators. These relationships defined unique habitat dependencies for juveniles whose survivals were strongly linked to growth rates, energy reserves, and seasonal trophic sheltering from predators. We found that juvenile herring were subject to substantial starvation losses during a winter period of plankton diminishment, and that predation on juvenile pink salmon was closely linked to the availability of alternative prey for fish and bird predators. Our collaborative study further revealed that juvenile pink salmon and age-0 herring exploit very different portions of the annual production cycle. Juvenile pink salmon targeted the cool-water, early spring plankton bloom dominated by diatoms and large calanoid copepods, whereas young-of-the-year juvenile herring were dependent on warmer conditions occurring later in the postbloom summer and fall when zooplankton was composed of smaller calanoids and a diversity of other taxa. The synopsis of our studies presented in this volume speaks to contemporary issues facing investigators of fish ecosystems, including juvenile fishes, and offers new insight into problems of bottom-up and top-down control. In aggregate, our results point to the importance of seeking mechanistic rather than correlative understandings of complex natural systems. [source] Freestanding Three-Dimensional Copper Foils Prepared by Electroless Deposition on Micropatterned Gels,ADVANCED MATERIALS, Issue 6 2005K. Smoukov Metal foils of complex, three-dimensional topographies are prepared by electroless deposition on surfaces of micropatterned hydrogel supports (see Figure). The foils can either be freestanding or supported by a photocurable polymer. It is possible to selectively metallize different portions of the micropattern embossed on the gel surface, and thus to prepare either continuous or membrane-like metal films. [source] Photobleaching of Dissolved Organic Material from a Tidal Marsh-Estuarine System of the Chesapeake Bay,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007Maria Tzortziou ABSTRACT Wetlands and tidal marshes in the Rhode River estuary of the Chesapeake Bay act as important sources of dissolved organic carbon and strongly absorbing dissolved organic matter (DOM) for adjacent estuarine waters. The effects of solar exposure on the photochemical degradation of colored DOM (CDOM) were examined for material derived from different sources (estuarine and freshwater parts of the Rhode River, sub-watershed stream, marshes) in this estuarine ecosystem. Consistent with changes in fluorescence emission, absorption loss upon exposure to different portions of the solar spectrum (i.e. different long-pass cut-off filters) occurred across the entire spectrum but the wavelength of maximum photobleaching decreased as the cut-off wavelength of the filter decreased. Our results illustrate that solar exposure can cause either an increase or a decrease in the CDOM absorption spectral slope, SCDOM, depending on the spectral quality of irradiation and, thus, on the parameters (e.g. atmospheric composition, concentration of UV-absorbing water constituents) that affect the spectral characteristics of the light to which CDOM is exposed. We derived a simple spectral model for describing the effects of solar exposure on CDOM optical quality. The model accurately, and consistently, predicted the observed dependence of CDOM photobleaching on the spectral quality of solar exposure. [source] |