Different Percentages (different + percentage)

Distribution by Scientific Domains


Selected Abstracts


Synthesis and characterization of high thermally-stable and good soluble PVK-based polymers with perylene moiety

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2008
Jianli Hua
Abstract Three new poly(N -vinylcarbazole) (PVK)-based copolymers containing N -(n -butyl)- N -ethyl-1,6,7,12-tetra-(4- tert -butyl-phenoxy)-3,4,9,10-perylene tetracarboxylic bisimides were successfully synthesized by partially formylated by the standard Vilsmeier reaction, and the formyl groups of high reactivity are condensed with cyanoacetylated perylene to afford PVK-based polymers. The copolymers containing different percentage of perylene were obtained through the percentage of cyanoacetylated perylene unit being controlled by the initial feed ratio. The structures and properties of three copolymers were characterized and evaluated by FT-IR, NMR, UV,vis, FL spectroscopy, gel permeation chromatography, and thermogravimetric analysis measurements. The polymers were highly soluble in conventional solvents such as toluene, CHCl3, THF, DMF etc., and they were thermally stable up to 442,445°C. Three copolymers have emission spectra with characteristic features of the perylene unit, and fluorescence quantum yields of polymers are higher than that of perylene bisimide, which may be caused by singlet,singlet energy transfer from PVK backbone to perylene in the polymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


Comparison of Neural Networks and Gravity Models in Trip Distribution

COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, Issue 2 2006
Frans Tillema
Modeling the distribution of trips between zones is complex and dependent on the quality and availability of field data. This research explores the performance of neural networks in trip distribution modeling and compares the results with commonly used doubly constrained gravity models. The approach differs from other research in several respects; the study is based on both synthetic data, varying in complexity, as well as real-world data. Furthermore, neural networks and gravity models are calibrated using different percentages of hold out data. Extensive statistical analyses are conducted to obtain necessary sample sizes for significant results. The results show that neural networks outperform gravity models when data are scarce in both synthesized as well as real-world cases. Sample size for statistically significant results is forty times lower for neural networks. [source]


Capillary electrophoresis using copolymers of different composition as physical coatings: A comparative study

ELECTROPHORESIS, Issue 5-6 2006
Guillaume L. Erny
Abstract In this work, a comparative study on the use of different polymers as physically adsorbed coatings for CE is presented. It is demonstrated that the use of ad hoc synthesized polymers as coatings allows tailoring the EOF in CE increasing the flexibility of this analytical technique. Namely, different polymers were synthesized at our laboratory using different percentages of ethylpyrrolidine methacrylate (EpyM) and N,N -dimethylacrylamide (DMA). Thus, by modifying the percentage of EpyM and DMA monomers it is possible to manipulate the positive charge of the copolymer, varying the global electrical charge on the capillary wall and with that the EOF. These coated capillaries are obtained by simply flushing a given EpyM,DMA aqueous solution into bare silica capillaries. It is shown that by using these coated capillaries at adequate pHs, faster or more resolved CE separations can be achieved depending on the requirements of each analysis. Moreover, it is demonstrated that these coated capillaries reduce the electrostatic adsorption of basic proteins onto the capillary wall. Furthermore, EpyM,DMA coatings allow the reproducible chiral separation of enantiomers through the partial filling technique (PFT). The EpyM,DMA coated capillaries are demonstrated to provide reproducible EOF values independently of the pH and polymer composition with%RSD values lower than 2% for the same day. It is also demonstrated that the coating procedure is reproducible between capillaries. The compatibility of this coating protocol with CE in microchips is discussed. [source]


DNA mismatch repair protein expression and microsatellite instability in primary mucosal melanomas of the head and neck

HISTOPATHOLOGY, Issue 6 2007
C Marani
Aims:, To examine the expression of DNA mismatch repair (MMR) proteins and the presence of microsatellite instability (MSI) in seven primary mucosal melanomas of the head and neck (MMHN). Methods and results:, Haematoxylin and eosin staining and immunohistochemical analysis for routine diagnostic markers and for MMR proteins were performed. Six cases were examined for MSI. Four cases were monomorphous and three cases were pleomorphic type MMHN. Melanocytic markers were positive in all cases. Immunoreactivity for MMR proteins was weak in normal epithelium. The neoplastic tissue in six cases showed positivity for all MMR proteins with different percentages. One case showed weak positivity for hMSH2 and hMSH6 and no immunoreactivity for hMLH1 or hPMS2. Staining intensity was higher in tumour cells than in matched normal mucosa in three cases for hMSH2 and hMLH1 and in two cases for hPMS2. None of the examined cases showed MSI. Conclusions:, Expression of hMSH2 and hMLH1 proteins was up-regulated in three cases, whereas in two cases that of hPMS2 was increased. hMSH6 expression was comparable to that of normal cells in all cases. The percentage of positive neoplastic cells and the intensity of staining seemed to be greater in pleomorphic melanomas. Six cases were MMR-proficient and microsatellite stable. [source]


Polypropylene nanocomposite film: A critical evaluation on the effect of nanoclay on the mechanical, thermal, and morphological behavior

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2010
S. K. Sharma
Abstract Polypropylene (PP)/clay nanocomposites prepared by melt blending technique using different percentages of clay with and without maleic anhydride grafted PP (MA-PP) were studied. The intercalated and exfoliated structure of nanocomposites was characterized by X-Ray Diffraction (XRD) and transmission electron microscopy (TEM). Because of the typical intercalated and exfoliated structure, the tensile modulus of the nanocomposites were improved significantly as compared to virgin PP. The viscoelastic behavior of the nanocomposites was studied by dynamical mechanical analysis (DMA) and the results showed that with the addition of treated clay to PP there was substantial improvement in storage modulus increases. The thermal stability and crystallization of the PP nanocomposites as studied by differential scanning calorimeter (DSC) and thermo gravimetric analysis (TGA) were also improved significantly compared to PP. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


Use of PP Grafted with Itaconic Acid as a New Compatibilizer for PP/Clay Nanocomposites

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 15 2006
Edwin Moncada
Abstract Summary: Functionalized PP samples with different percentages of grafted IA, i.e., 0.7, 1 or 1.8 wt.-%, with similar molecular weights were used as compatibilizers in PP/clay nanocomposites. PP nanocomposites containing 1 wt.-% of organically modified clays, i.e., montmorillonite, natural hectorite and synthetic hectorite and 3 wt.-% of grafted PP with three different percentages of grafted IA as compatibilizers and two commercial PP samples of different molecular weights were prepared by melt blending. The nanocomposites were characterized by XRD, TEM and tensile mechanical measurements. It was found that the molecular weight of PP used as matrix as well as the percentage of grafted IA of the compatibilizer affected the degree of intercalation/exfoliation of the clay and consequently the mechanical properties of the nanocomposites. Values of 2,137 MPa for the modulus and 51 MPa for the tensile strength were obtained when natural hectorite was used and 2,117 and 40 MPa were obtained when montmorillonite was used. A comparative study was carried out, where PP grafted with maleic anhydride was used as the compatibilizer. Inferior mechanical properties were obtained for nanocomposites prepared by using this compatibilizer, where values of 1,607 MPa for the tensile modulus and 43 MPa for tensile strength were obtained. This result indicated that IA-grafted PP was far more efficient as compatibilizer for the formation of nanocomposites than commercially available maleic anhydride-grafted PP. Model showing interaction of the organically modified clay with grafted PP used as compatibilizer. [source]


Development of UHMWPE modified PP/PET blends and their mechanical and abrasive wear behavior

POLYMER COMPOSITES, Issue 2 2007
Navin Chand
In this study, polypropylene and polyethylene terephthalate blend were modified by incorporating different percentages of ultrahigh molecular weight polyethylene (UHMWPE) ranging from 1 to 5 phr. Modified blends were prepared by melt mixing the PP/PET blend and UHMWPE. Ultimate tensile strength of UHMWPE filled blend was determined at 10, 20, 50, and 100 mm/min cross head speeds of testing. It was found that increase of cross head speed from 10 to 100 mm/min increases the tensile strength of PP/PET/UHMWPE blends. Maximum ultimate tensile strength is exhibited by the blend containing 2 phr UHMWPE. Breaking strain of the UHMWPE modified and unmodified PP/PET blend increased with the increase of cross head speed due to the highly entangled chain structure of UHMWPE. Shore A hardness of the filled blends also increased from 341 to 356, which is highest for 2 phr UHMWPE. High stress abrasive wear of UHMWPE modified blend was determined by using Suga abrasion tester, model NUS-1 Japan. Wear rate of the PP/PET(90/10) blends having 1, 2, and 5 phr of UHMWPE was determined at different loads such as 1, 3, 5, and 7 N and sliding distances from 6.4 m to 25.6 m. Wear rate values show that UHMWPE has prominent effect on abrasive wear of PP/PET blends. Addition of 2 and 5 phr UHMWPE improved the wear resistance of PP/PET blends at different loads, which has been explained on the basis of improved bonding as compared with pure PP/PET blend and increased hardness. Maximum abrasive wear rate reduction was achieved by adding 2 phr UHMWPE in PP/PET(90/10) blend. POLYM. COMPOS. 28:267,272, 2007. © 2007 Society of Plastics Engineers [source]


Production of leather-like composites using short leather fibers.

POLYMER COMPOSITES, Issue 6 2002

Leather-like composites were prepared by addition of chemically modified short leather fibers (SLF) into a plasticized polyvinyl chloride (pPVC) matrix. The fibers were subjected to chemical modification by emulsion polymerization to achieve good interfacial adhesion between SLF and the pPVC matrix. The SLF with chemical modification were obtained from three different reaction conditions where these SLF have different percentages of grafted and deposited PMMA polymer onto the fiber surface. The incorporation of the SLF into the thermoplastic matrix was carried out using a torque-rheometer and the composites obtained were molded by compression. Tensile and tear mechanical tests were performed on composite samples, and the morphology of the fractured surfaces was analyzed using scanning electron microscopy (SEM). The results show that the incorporation by grafting of polymethyl metacrylate (PMMA) onto the fibers produced a significant improvement of their interfacial adhesion to pPVC, promoting the compatibilization between the fiber surface and matrix. The findings are discussed and interpreted in terms of enhanced adhesion at phase boundaries. Overall, the results confirm that it is possible to produce modified leather composites based on a pPVC matrix, which exhibit relatively high tensile strength, tear resistance and flexibility. These composites are very suitable candidate materials for applications in the footwear industry. [source]