Home About us Contact | |||
Different Mesh Size (different + mesh_size)
Selected AbstractsAutomatic energy conserving space,time refinement for linear dynamic structural problemsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 3 2005P. Cavin Abstract In this paper a local space,time automatic refinement method (STAR method) is developed to efficiently solve time-dependent problems using FEM techniques. The automatic process is driven by an energy or a displacement error indicator which controls the precision of the result. The STAR method solves the numerical problem on grids with different mesh size. For the Newmark schemes, a general demonstration, using the energy method, gives the interface conditions between two successive grids which is compatible with the stability of the scheme. Finally, using a linear one-dimensional example, the convergence of the method and the precision of the results are discussed. Copyright © 2005 John Wiley & Sons, Ltd. [source] The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studiesBIOLOGICAL REVIEWS, Issue 3 2009Christian Kampichler ABSTRACT Litterbags have been utilized in soil ecology for about 50 years. They are useful because they confine organic material and thus enable the study of decomposition dynamics (mass loss and/or nutrient loss through time, colonization by soil biota) in situ, i.e. under field conditions. Researchers can easily restrict or permit access to certain size classes of soil fauna to determine their contribution to litter mass loss by choosing adequate mesh size or applying specific biocides. In particular, the mesofauna has received much attention since it comprises two very abundant and diverse microarthropod groups, the Collembola (springtails) and Acari (mites). We comprehensively searched the literature from the mid-1960s to the end of 2005 for reports on litterbag experiments investigating the role of microarthropods in terrestrial decomposition. Thirty papers reporting 101 experiments satisfied our selection criteria and were included in the database. Our meta-analysis revealed that microarthropods have a moderate but significant effect on mass loss. We discuss in detail the interactions of the microarthropod effect with study characteristics such as experimental design (e.g. number of bags, duration of experiment), type of exposed organic matter, climatic zone and land use of the study site. No publication bias was detected; however, we noticed a significant decrease in the microarthropod effect with publication year, indicating that, in the first decades of litterbag use, soil zoologists may have studied "promising" sites with a higher a priori probability of positive microarthropod effects on litter mass loss. A general weakness is that the treatments differ not only with respect to the presence or absence of microarthropods, but also with regard to mesh size (small to exclude microarthropods, wide to permit their access) or presence (to exclude microarthropods) and absence (to permit their access) of an insecticide. Consequently, the difference between the decomposition rates in the treatments is not a pure microarthropod effect but will be influenced by the additive effects of mesh size and insecticide. The relative contribution of the "true" microarthropod effect remains unknown without additional treatments controlling for the differential mesh size/insecticide effect. A meta-analysis including only those studies using different mesh size and for which the data were corrected by subtracting an estimated mesh size effect based on data from the literature yielded a significantly negative microarthropod effect on litter decomposition. These results cast doubt on the widely accepted hypothesis that microarthropods generally exert a positive effect on litter mass loss. We conclude that after 40 years of litterbag studies our knowledge on the role of microarthropods in litter mass loss remains limited and that the inclusion of a third treatment in future studies is a promising way to retain litterbags as a meaningful tool of soil biological studies. [source] Variability of Organic Matter Processing in a Mediterranean Coastal LagoonINTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 5-6 2004Margarita Menéndez Abstract The spatial variability of plant organic matter processing was studied experimentally in a shallow coastal lagoon (Tancada lagoon, average depth: 37 cm, area: 1.8 km2) in the Ebro River Delta (NE Spain). To determine the effect of hydrology and sediment characteristics on plant organic matter processing, leaves of Phragmites australis at the end of its vegetative cycle and whole plants of Ruppia cirrhosa(Petagna) Grande, just abscised, were enclosed in litter bags. Two different mesh sizes (100 ,m and 2 mm) were used to study the effect of macroinvertebrates on decomposition. The bags were placed in the water column and approximately 15 cm above the sediment at 6 different locations in the lagoon. The experiment was performed twice, in autumn-winter and spring-summer. The effect of macroinvertebrates on decomposition rate was not significant in Tancada lagoon. Breakdown rates showed spatial differences only in spring-summer. In the autumn-winter experiment, the effect of strong wind masked the effects of environmental variables and hydrology on decomposition rate. In the spring-summer experiment, characterised by high stability of the water column, dissolved inorganic nitrogen (DIN) concentration in the water column and organic matter in the sediment were the main factors determining the variability of organic matter processing. A positive relationship was calculated between P. australis decomposition rate and dissolved inorganic nitrogen in spring-summer (r2 = 0.92, p < 0.001). (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Volume-of-fluid-based model for multiphase flow in high-pressure trickle-bed reactor: Optimization of numerical parametersAICHE JOURNAL, Issue 11 2009Rodrigo J. G. Lopes Abstract Aiming to understand the effect of various parameters such as liquid velocity, surface tension, and wetting phenomena, a Volume-of-Fluid (VOF) model was developed to simulate the multiphase flow in high-pressure trickle-bed reactor (TBR). As the accuracy of the simulation is largely dependent on mesh density, different mesh sizes were compared for the hydrodynamic validation of the multiphase flow model. Several model solution parameters comprising different time steps, convergence criteria and discretization schemes were examined to establish model parametric independency results. High-order differencing schemes were found to agree better with the experimental data from the literature given that its formulation includes inherently the minimization of artificial numerical dissipation. The optimum values for the numerical solution parameters were then used to evaluate the hydrodynamic predictions at high-pressure demonstrating the significant influence of the gas flow rate mainly on liquid holdup rather than on two-phase pressure drop and exhibiting hysteresis in both hydrodynamic parameters. Afterwards, the VOF model was applied to evaluate successive radial planes of liquid volume fraction at different packed bed cross-sections. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] |