Different Fish Species (different + fish_species)

Distribution by Scientific Domains


Selected Abstracts


Differential binding of endogenous steroids and chemicals to androgen receptors in rainbow trout and goldfish

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2000
Kelly Wells
Abstract Androgen receptors (ARs) from fish were characterized in order to evaluate differences in the binding affinities of steroids and environmental chemicals between mammals and fish, among species offish, and among target tissues within a species of fish. High-affinity, low-capacity ARs were identified in cytosolic fractions of rainbow trout brains (Oncorhynchus mykiss) and the brains, ovaries, and testes of goldfish (Carassius auratus) using [3H]testosterone. The binding specificities of endogenous steroids to the ARs did not differ between goldfish tissues but did differ between goldfish and rainbow trout. Interspecies differences in binding specificities were also seen using cyproterone acetate, which bound to the ARs in the goldfish tissues, but not in the rainbow trout brains. The mammalian antiandrogens flutamide, vinclozolin and its metabolites 2-(((3,5)-dichlorophenyl-carbamo-yl)oxy)-2-methyl-3-butenoic acid and 3,,5,-dichloro-2-hydroxy-2-methylbut-3-enanilide, along with procymidone did not bind to the ARs in any of the fish tissues tested. However, other mammalian antiandrogens including methoxychlor and its metabolite 2,2-bis(p -hydroxyphenyl)-1,1,1-trichloroethane, o,p,-DDT, o,p,-dichlorodiphenyldichloroethylene (DDE) and p,p,-DDE did bind to the fish ARs, but only in the goldfish testes, demonstrating tissue differences in AR binding specificities of environmental chemicals. These results may be due to the presence of multiple AR isoforms in the different fish species and tissues. This study supports the growing evidence of species differences in the potency and actions of endocrine-disrupting chemicals and suggests that multiple species need to be tested when screening the receptor binding ability of potential endocrine-disrupting chemicals. [source]


Evaluation and standardisation of different matrices used for double-blind placebo-controlled food challenges to fish

JOURNAL OF HUMAN NUTRITION & DIETETICS, Issue 5 2010
E. Vassilopoulou
Abstract Background:, Fish allergens represent one of the most common causes of adverse reactions to food worldwide. Double-blind placebo-controlled food challenges (DBPCFC) are the gold standard for food allergy diagnosis. However, no standardised recipes are available for common food allergens such as fish, and a well trained dietitian is essential for creating and standardising them. The present study aimed to create and standardise recipes for use in DBPCFCs to fish. Methods:, Three recipes were prepared. Employing a standardised procedure, a total of 35 panelists evaluated the different matrices using an evaluation form. A paired comparison test was used to estimate total evaluation's outcome. Fish allergic patients were challenged with different fish species blinded with the selected matrix and evaluated the recipe using the same form. Results:, From a base recipe and step-by-step modifications, a low fat recipe was selected among other recipes tested, which proved to be appropriate for fish blinding, in terms of taste, odour, appearance and blinding. Patients challenged with the final matrix found it acceptable, no matter which fish type was used. Conclusions:, In this pilot study, a recipe with satisfactory organoleptic characteristics was developed and validated for DBPCFC to fish. [source]


Estimating Amino Acid Requirement of Brazilian Freshwater Fish from Muscle Amino Acid Profile

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 6 2009
ÁLvaro José De Almeida Bicudo
Information on nutritional requirement of some Brazilian farmed fish species, especially essential amino acids (EAA) requirements, is scarce. The estimation of amino acids requirements based on amino acid composition of fish is a fast and reliable alternative. Matrinxa, Brycon amazonicus, and curimbata, Prochilodus lineatus, are two important Brazilian fish with potential for aquaculture. The objective of the present study was to estimate amino acid requirements of these species and analyze similarities among amino acid composition of different fish species by cluster analysis. To estimate amino acid requirement, the following formula was used: amino acid requirement = [(amount of an individual amino acid in fish muscle tissue) × (average totalEAA requirement among channel catfish, Ictalurus punctatus, Nile tilapia, Oreochromis niloticus, and common carp, Cyprinus carpio)]/(average fish muscle totalEAA). Most values found lie within the range of requirements determined for other omnivorous fish species, in exception of leucine requirement estimated for both species, and arginine requirement estimated for matrinxa alone. Rather than writing off the need for regular dose,response assays under the ideal protein concept to determine EAA requirements of curimbata and matrinxa, results set solid base for the study of tropical species dietary amino acids requirements. [source]


Osteological Development of the Garfish (Belone belone) Larvae

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 5 2009
S. Ku
Summary Garfish, Belone belone (Linnaeus, 1761) is an elongate, slander fish inhabiting the Eastern Atlantic and Mediterranean Sea. These fish from the Belonidae (Actinopterygii) family have important commercial value for Croatian fisheries. Samples for research were collected from experimental hatching in the Novigrad Sea. Preparation techniques included fixation in buffered formalin, trypsin clearing and staining with alcian blue and alizarin red. As little is known of garfish osteology and bone morphology, the main goal of this study was to describe ossification process in garfish fry. At hatching, no skeletal structure is present. Newly-hatched larvae also had no osteological elements. Ossification started at 7 day post-hatching (DPH) [total length (TL) 18 mm] with head bones and vertebral neural arch. Head skeleton continued to develop mostly over the period from 7 to 10 DPH. At 21 DPH (TL 49 mm), ossification process seemed to be finished, but it was not possible to distinguish borders of all bones. The primary interest of our research was to understand the growth dynamics as well as transformation of supporting body elements from cartilage to bone. At the end, developmental characteristics and functional aspects of this formation in different fish species are discussed. [source]


Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: a review

AQUACULTURE RESEARCH, Issue 4 2010
Einar Ringř
Abstract Intensive fish production worldwide has increased the risk of infectious diseases. However, before any infection can be established, pathogens must penetrate the primary barrier. In fish, the three major routes of infection are the skin, gills and gastrointestinal (GI) tract. The GI tract is essentially a muscular tube lined by a mucous membrane of columnar epithelial cells that exhibit a regional variation in structure and function. In the last two decades, our understanding of the endocytosis and translocation of bacteria across this mucosa, and the sorts of cell damage caused by pathogenic bacteria, has increased. Electron microscopy has made a valuable contribution to this knowledge. In the fish-farming industry, severe economic losses are caused by furunculosis (agent, Aeromonas salmonicida spp. salmonicida) and vibriosis [agent, Vibrio (Listonella) anguillarum]. This article provides an overview of the GI tract of fish from an electron microscopical perspective focusing on cellular damage (specific attack on tight junctions and desmosomes) caused by pathogenic bacteria, and interactions between the ,good' intestinal bacteria [e.g. lactic acid bacteria (LAB)] and pathogens. Using different in vitro methods, several studies have demonstrated that co-incubation of Atlantic salmon (Salmo salar L.) foregut (proximal intestine) with LAB and pathogens can have beneficial effects, the cell damage caused by the pathogens being prevented, to some extent, by the LAB. However, there is uncertainty over whether or not similar effects are observed in other species such as Atlantic cod (Gadus morhua L.). When discussing cellular damage in the GI tract of fish caused by pathogenic bacteria, several important questions arise including: (1) Do different pathogenic bacteria use different mechanisms to infect the gut? (2) Does the gradual development of the GI tract from larva to adult affect infection? (3) Are there different infection patterns between different fish species? The present article addresses these and other questions. [source]


Biotransformation of tuna waste by co-fermentation into an aquafeed ingredient

AQUACULTURE RESEARCH, Issue 9 2009
Hena Vijayan
Abstract Dried skipjack tuna (Katsuwonus pelamis) waste (red meat, gills, viscera, fins, etc.) were mixed with 25% wheat flour and inoculated with a starter culture of Lactobacillus plantarum National Collection of Industrial Microorganisms (NCIM) 2912 (108,109 cells mL,1) and Bacillus licheniformis MTCC 6824 (107,108 cells mL,1). Changes in the nutritional quality (crude protein, crude fat, crude ash, crude fibre and nitrogen-free extract and aminoacids) were monitored during a fermentation period of 14 days. The proximate analysis showed significant changes in the composition of L. plantarum -fermented tuna (LPFT) and B. licheniformis -fermented tuna (BLFT) from the unfermented raw materials. Fermentation of tuna waste has resulted in a significant (P<0.05) increase in the protein content of tuna waste between days 6 and 12. All the amino acid contents in BLFT increased during fermentation, whereas, in LPFT the levels of serine, histidine, tyrosine, methionine, cystine and phenylalanine contents were decreased. A marginal increase in calcium and phosphorus levels was recorded in the fermented products. The results of the study suggest that LPFT or BLFT can be used as a novel aquafeed ingredient for different fish species. [source]